vserver 1.9.3
[linux-2.6.git] / net / sunrpc / cache.c
1 /*
2  * net/sunrpc/cache.c
3  *
4  * Generic code for various authentication-related caches
5  * used by sunrpc clients and servers.
6  *
7  * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
8  *
9  * Released under terms in GPL version 2.  See COPYING.
10  *
11  */
12
13 #include <linux/types.h>
14 #include <linux/fs.h>
15 #include <linux/file.h>
16 #include <linux/slab.h>
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/kmod.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/ctype.h>
23 #include <asm/uaccess.h>
24 #include <linux/poll.h>
25 #include <linux/seq_file.h>
26 #include <linux/proc_fs.h>
27 #include <linux/net.h>
28 #include <linux/workqueue.h>
29 #include <asm/ioctls.h>
30 #include <linux/sunrpc/types.h>
31 #include <linux/sunrpc/cache.h>
32 #include <linux/sunrpc/stats.h>
33
34 #define  RPCDBG_FACILITY RPCDBG_CACHE
35
36 void cache_init(struct cache_head *h)
37 {
38         time_t now = get_seconds();
39         h->next = NULL;
40         h->flags = 0;
41         atomic_set(&h->refcnt, 1);
42         h->expiry_time = now + CACHE_NEW_EXPIRY;
43         h->last_refresh = now;
44 }
45
46
47 static int cache_make_upcall(struct cache_detail *detail, struct cache_head *h);
48 /*
49  * This is the generic cache management routine for all
50  * the authentication caches.
51  * It checks the currency of a cache item and will (later)
52  * initiate an upcall to fill it if needed.
53  *
54  *
55  * Returns 0 if the cache_head can be used, or cache_puts it and returns
56  * -EAGAIN if upcall is pending,
57  * -ENOENT if cache entry was negative
58  */
59 int cache_check(struct cache_detail *detail,
60                     struct cache_head *h, struct cache_req *rqstp)
61 {
62         int rv;
63         long refresh_age, age;
64
65         /* First decide return status as best we can */
66         if (!test_bit(CACHE_VALID, &h->flags) ||
67             h->expiry_time < get_seconds())
68                 rv = -EAGAIN;
69         else if (detail->flush_time > h->last_refresh)
70                 rv = -EAGAIN;
71         else {
72                 /* entry is valid */
73                 if (test_bit(CACHE_NEGATIVE, &h->flags))
74                         rv = -ENOENT;
75                 else rv = 0;
76         }
77
78         /* now see if we want to start an upcall */
79         refresh_age = (h->expiry_time - h->last_refresh);
80         age = get_seconds() - h->last_refresh;
81
82         if (rqstp == NULL) {
83                 if (rv == -EAGAIN)
84                         rv = -ENOENT;
85         } else if (rv == -EAGAIN || age > refresh_age/2) {
86                 dprintk("Want update, refage=%ld, age=%ld\n", refresh_age, age);
87                 if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
88                         switch (cache_make_upcall(detail, h)) {
89                         case -EINVAL:
90                                 clear_bit(CACHE_PENDING, &h->flags);
91                                 if (rv == -EAGAIN) {
92                                         set_bit(CACHE_NEGATIVE, &h->flags);
93                                         cache_fresh(detail, h, get_seconds()+CACHE_NEW_EXPIRY);
94                                         rv = -ENOENT;
95                                 }
96                                 break;
97
98                         case -EAGAIN:
99                                 clear_bit(CACHE_PENDING, &h->flags);
100                                 cache_revisit_request(h);
101                                 break;
102                         }
103                 }
104         }
105
106         if (rv == -EAGAIN)
107                 cache_defer_req(rqstp, h);
108
109         if (rv && h)
110                 detail->cache_put(h, detail);
111         return rv;
112 }
113
114 static void queue_loose(struct cache_detail *detail, struct cache_head *ch);
115
116 void cache_fresh(struct cache_detail *detail,
117                  struct cache_head *head, time_t expiry)
118 {
119
120         head->expiry_time = expiry;
121         head->last_refresh = get_seconds();
122         if (!test_and_set_bit(CACHE_VALID, &head->flags))
123                 cache_revisit_request(head);
124         if (test_and_clear_bit(CACHE_PENDING, &head->flags))
125                 queue_loose(detail, head);
126 }
127
128 /*
129  * caches need to be periodically cleaned.
130  * For this we maintain a list of cache_detail and
131  * a current pointer into that list and into the table
132  * for that entry.
133  *
134  * Each time clean_cache is called it finds the next non-empty entry
135  * in the current table and walks the list in that entry
136  * looking for entries that can be removed.
137  *
138  * An entry gets removed if:
139  * - The expiry is before current time
140  * - The last_refresh time is before the flush_time for that cache
141  *
142  * later we might drop old entries with non-NEVER expiry if that table
143  * is getting 'full' for some definition of 'full'
144  *
145  * The question of "how often to scan a table" is an interesting one
146  * and is answered in part by the use of the "nextcheck" field in the
147  * cache_detail.
148  * When a scan of a table begins, the nextcheck field is set to a time
149  * that is well into the future.
150  * While scanning, if an expiry time is found that is earlier than the
151  * current nextcheck time, nextcheck is set to that expiry time.
152  * If the flush_time is ever set to a time earlier than the nextcheck
153  * time, the nextcheck time is then set to that flush_time.
154  *
155  * A table is then only scanned if the current time is at least
156  * the nextcheck time.
157  * 
158  */
159
160 static LIST_HEAD(cache_list);
161 static spinlock_t cache_list_lock = SPIN_LOCK_UNLOCKED;
162 static struct cache_detail *current_detail;
163 static int current_index;
164
165 static struct file_operations cache_file_operations;
166 static struct file_operations content_file_operations;
167 static struct file_operations cache_flush_operations;
168
169 static void do_cache_clean(void *data);
170 static DECLARE_WORK(cache_cleaner, do_cache_clean, NULL);
171
172 void cache_register(struct cache_detail *cd)
173 {
174         cd->proc_ent = proc_mkdir(cd->name, proc_net_rpc);
175         if (cd->proc_ent) {
176                 struct proc_dir_entry *p;
177                 cd->proc_ent->owner = THIS_MODULE;
178                 cd->channel_ent = cd->content_ent = NULL;
179                 
180                 p = create_proc_entry("flush", S_IFREG|S_IRUSR|S_IWUSR,
181                                       cd->proc_ent);
182                 cd->flush_ent =  p;
183                 if (p) {
184                         p->proc_fops = &cache_flush_operations;
185                         p->owner = THIS_MODULE;
186                         p->data = cd;
187                 }
188  
189                 if (cd->cache_request || cd->cache_parse) {
190                         p = create_proc_entry("channel", S_IFREG|S_IRUSR|S_IWUSR,
191                                               cd->proc_ent);
192                         cd->channel_ent = p;
193                         if (p) {
194                                 p->proc_fops = &cache_file_operations;
195                                 p->owner = THIS_MODULE;
196                                 p->data = cd;
197                         }
198                 }
199                 if (cd->cache_show) {
200                         p = create_proc_entry("content", S_IFREG|S_IRUSR|S_IWUSR,
201                                               cd->proc_ent);
202                         cd->content_ent = p;
203                         if (p) {
204                                 p->proc_fops = &content_file_operations;
205                                 p->owner = THIS_MODULE;
206                                 p->data = cd;
207                         }
208                 }
209         }
210         rwlock_init(&cd->hash_lock);
211         INIT_LIST_HEAD(&cd->queue);
212         spin_lock(&cache_list_lock);
213         cd->nextcheck = 0;
214         cd->entries = 0;
215         atomic_set(&cd->readers, 0);
216         cd->last_close = 0;
217         cd->last_warn = -1;
218         list_add(&cd->others, &cache_list);
219         spin_unlock(&cache_list_lock);
220
221         /* start the cleaning process */
222         schedule_work(&cache_cleaner);
223 }
224
225 int cache_unregister(struct cache_detail *cd)
226 {
227         cache_purge(cd);
228         spin_lock(&cache_list_lock);
229         write_lock(&cd->hash_lock);
230         if (cd->entries || atomic_read(&cd->inuse)) {
231                 write_unlock(&cd->hash_lock);
232                 spin_unlock(&cache_list_lock);
233                 return -EBUSY;
234         }
235         if (current_detail == cd)
236                 current_detail = NULL;
237         list_del_init(&cd->others);
238         write_unlock(&cd->hash_lock);
239         spin_unlock(&cache_list_lock);
240         if (cd->proc_ent) {
241                 if (cd->flush_ent)
242                         remove_proc_entry("flush", cd->proc_ent);
243                 if (cd->channel_ent)
244                         remove_proc_entry("channel", cd->proc_ent);
245                 if (cd->content_ent)
246                         remove_proc_entry("content", cd->proc_ent);
247
248                 cd->proc_ent = NULL;
249                 remove_proc_entry(cd->name, proc_net_rpc);
250         }
251         if (list_empty(&cache_list)) {
252                 /* module must be being unloaded so its safe to kill the worker */
253                 cancel_delayed_work(&cache_cleaner);
254                 flush_scheduled_work();
255         }
256         return 0;
257 }
258
259 struct cache_detail *cache_find(char *name)
260 {
261         struct list_head *l;
262
263         spin_lock(&cache_list_lock);
264         list_for_each(l, &cache_list) {
265                 struct cache_detail *cd = list_entry(l, struct cache_detail, others);
266                 
267                 if (strcmp(cd->name, name)==0) {
268                         atomic_inc(&cd->inuse);
269                         spin_unlock(&cache_list_lock);
270                         return cd;
271                 }
272         }
273         spin_unlock(&cache_list_lock);
274         return NULL;
275 }
276
277 /* cache_drop must be called on any cache returned by
278  * cache_find, after it has been used
279  */
280 void cache_drop(struct cache_detail *detail)
281 {
282         atomic_dec(&detail->inuse);
283 }
284
285 /* clean cache tries to find something to clean
286  * and cleans it.
287  * It returns 1 if it cleaned something,
288  *            0 if it didn't find anything this time
289  *           -1 if it fell off the end of the list.
290  */
291 int cache_clean(void)
292 {
293         int rv = 0;
294         struct list_head *next;
295
296         spin_lock(&cache_list_lock);
297
298         /* find a suitable table if we don't already have one */
299         while (current_detail == NULL ||
300             current_index >= current_detail->hash_size) {
301                 if (current_detail)
302                         next = current_detail->others.next;
303                 else
304                         next = cache_list.next;
305                 if (next == &cache_list) {
306                         current_detail = NULL;
307                         spin_unlock(&cache_list_lock);
308                         return -1;
309                 }
310                 current_detail = list_entry(next, struct cache_detail, others);
311                 if (current_detail->nextcheck > get_seconds())
312                         current_index = current_detail->hash_size;
313                 else {
314                         current_index = 0;
315                         current_detail->nextcheck = get_seconds()+30*60;
316                 }
317         }
318
319         /* find a non-empty bucket in the table */
320         while (current_detail &&
321                current_index < current_detail->hash_size &&
322                current_detail->hash_table[current_index] == NULL)
323                 current_index++;
324
325         /* find a cleanable entry in the bucket and clean it, or set to next bucket */
326         
327         if (current_detail && current_index < current_detail->hash_size) {
328                 struct cache_head *ch, **cp;
329                 struct cache_detail *d;
330                 
331                 write_lock(&current_detail->hash_lock);
332
333                 /* Ok, now to clean this strand */
334                         
335                 cp = & current_detail->hash_table[current_index];
336                 ch = *cp;
337                 for (; ch; cp= & ch->next, ch= *cp) {
338                         if (current_detail->nextcheck > ch->expiry_time)
339                                 current_detail->nextcheck = ch->expiry_time+1;
340                         if (ch->expiry_time >= get_seconds()
341                             && ch->last_refresh >= current_detail->flush_time
342                                 )
343                                 continue;
344                         if (test_and_clear_bit(CACHE_PENDING, &ch->flags))
345                                 queue_loose(current_detail, ch);
346
347                         if (!atomic_read(&ch->refcnt))
348                                 break;
349                 }
350                 if (ch) {
351                         cache_get(ch);
352                         clear_bit(CACHE_HASHED, &ch->flags);
353                         *cp = ch->next;
354                         ch->next = NULL;
355                         current_detail->entries--;
356                         rv = 1;
357                 }
358                 write_unlock(&current_detail->hash_lock);
359                 d = current_detail;
360                 if (!ch)
361                         current_index ++;
362                 spin_unlock(&cache_list_lock);
363                 if (ch)
364                         d->cache_put(ch, d);
365         } else
366                 spin_unlock(&cache_list_lock);
367
368         return rv;
369 }
370
371 /*
372  * We want to regularly clean the cache, so we need to schedule some work ...
373  */
374 static void do_cache_clean(void *data)
375 {
376         int delay = 5;
377         if (cache_clean() == -1)
378                 delay = 30*HZ;
379
380         if (list_empty(&cache_list))
381                 delay = 0;
382
383         if (delay)
384                 schedule_delayed_work(&cache_cleaner, delay);
385 }
386
387
388 /* 
389  * Clean all caches promptly.  This just calls cache_clean
390  * repeatedly until we are sure that every cache has had a chance to 
391  * be fully cleaned
392  */
393 void cache_flush(void)
394 {
395         while (cache_clean() != -1)
396                 cond_resched();
397         while (cache_clean() != -1)
398                 cond_resched();
399 }
400
401 void cache_purge(struct cache_detail *detail)
402 {
403         detail->flush_time = LONG_MAX;
404         detail->nextcheck = get_seconds();
405         cache_flush();
406         detail->flush_time = 1;
407 }
408
409
410
411 /*
412  * Deferral and Revisiting of Requests.
413  *
414  * If a cache lookup finds a pending entry, we
415  * need to defer the request and revisit it later.
416  * All deferred requests are stored in a hash table,
417  * indexed by "struct cache_head *".
418  * As it may be wasteful to store a whole request
419  * structure, we allow the request to provide a 
420  * deferred form, which must contain a
421  * 'struct cache_deferred_req'
422  * This cache_deferred_req contains a method to allow
423  * it to be revisited when cache info is available
424  */
425
426 #define DFR_HASHSIZE    (PAGE_SIZE/sizeof(struct list_head))
427 #define DFR_HASH(item)  ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
428
429 #define DFR_MAX 300     /* ??? */
430
431 spinlock_t cache_defer_lock = SPIN_LOCK_UNLOCKED;
432 static LIST_HEAD(cache_defer_list);
433 static struct list_head cache_defer_hash[DFR_HASHSIZE];
434 static int cache_defer_cnt;
435
436 void cache_defer_req(struct cache_req *req, struct cache_head *item)
437 {
438         struct cache_deferred_req *dreq;
439         int hash = DFR_HASH(item);
440
441         dreq = req->defer(req);
442         if (dreq == NULL)
443                 return;
444
445         dreq->item = item;
446         dreq->recv_time = get_seconds();
447
448         spin_lock(&cache_defer_lock);
449
450         list_add(&dreq->recent, &cache_defer_list);
451
452         if (cache_defer_hash[hash].next == NULL)
453                 INIT_LIST_HEAD(&cache_defer_hash[hash]);
454         list_add(&dreq->hash, &cache_defer_hash[hash]);
455
456         /* it is in, now maybe clean up */
457         dreq = NULL;
458         if (++cache_defer_cnt > DFR_MAX) {
459                 /* too much in the cache, randomly drop
460                  * first or last
461                  */
462                 if (net_random()&1) 
463                         dreq = list_entry(cache_defer_list.next,
464                                           struct cache_deferred_req,
465                                           recent);
466                 else
467                         dreq = list_entry(cache_defer_list.prev,
468                                           struct cache_deferred_req,
469                                           recent);
470                 list_del(&dreq->recent);
471                 list_del(&dreq->hash);
472                 cache_defer_cnt--;
473         }
474         spin_unlock(&cache_defer_lock);
475
476         if (dreq) {
477                 /* there was one too many */
478                 dreq->revisit(dreq, 1);
479         }
480         if (test_bit(CACHE_VALID, &item->flags)) {
481                 /* must have just been validated... */
482                 cache_revisit_request(item);
483         }
484 }
485
486 void cache_revisit_request(struct cache_head *item)
487 {
488         struct cache_deferred_req *dreq;
489         struct list_head pending;
490
491         struct list_head *lp;
492         int hash = DFR_HASH(item);
493
494         INIT_LIST_HEAD(&pending);
495         spin_lock(&cache_defer_lock);
496         
497         lp = cache_defer_hash[hash].next;
498         if (lp) {
499                 while (lp != &cache_defer_hash[hash]) {
500                         dreq = list_entry(lp, struct cache_deferred_req, hash);
501                         lp = lp->next;
502                         if (dreq->item == item) {
503                                 list_del(&dreq->hash);
504                                 list_move(&dreq->recent, &pending);
505                                 cache_defer_cnt--;
506                         }
507                 }
508         }
509         spin_unlock(&cache_defer_lock);
510
511         while (!list_empty(&pending)) {
512                 dreq = list_entry(pending.next, struct cache_deferred_req, recent);
513                 list_del_init(&dreq->recent);
514                 dreq->revisit(dreq, 0);
515         }
516 }
517
518 void cache_clean_deferred(void *owner)
519 {
520         struct cache_deferred_req *dreq, *tmp;
521         struct list_head pending;
522
523
524         INIT_LIST_HEAD(&pending);
525         spin_lock(&cache_defer_lock);
526         
527         list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
528                 if (dreq->owner == owner) {
529                         list_del(&dreq->hash);
530                         list_move(&dreq->recent, &pending);
531                         cache_defer_cnt--;
532                 }
533         }
534         spin_unlock(&cache_defer_lock);
535
536         while (!list_empty(&pending)) {
537                 dreq = list_entry(pending.next, struct cache_deferred_req, recent);
538                 list_del_init(&dreq->recent);
539                 dreq->revisit(dreq, 1);
540         }
541 }
542
543 /*
544  * communicate with user-space
545  *
546  * We have a magic /proc file - /proc/sunrpc/cache
547  * On read, you get a full request, or block
548  * On write, an update request is processed
549  * Poll works if anything to read, and always allows write
550  *
551  * Implemented by linked list of requests.  Each open file has 
552  * a ->private that also exists in this list.  New request are added
553  * to the end and may wakeup and preceding readers.
554  * New readers are added to the head.  If, on read, an item is found with
555  * CACHE_UPCALLING clear, we free it from the list.
556  *
557  */
558
559 static spinlock_t queue_lock = SPIN_LOCK_UNLOCKED;
560 static DECLARE_MUTEX(queue_io_sem);
561
562 struct cache_queue {
563         struct list_head        list;
564         int                     reader; /* if 0, then request */
565 };
566 struct cache_request {
567         struct cache_queue      q;
568         struct cache_head       *item;
569         char                    * buf;
570         int                     len;
571         int                     readers;
572 };
573 struct cache_reader {
574         struct cache_queue      q;
575         int                     offset; /* if non-0, we have a refcnt on next request */
576 };
577
578 static ssize_t
579 cache_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
580 {
581         struct cache_reader *rp = filp->private_data;
582         struct cache_request *rq;
583         struct cache_detail *cd = PDE(filp->f_dentry->d_inode)->data;
584         int err;
585
586         if (count == 0)
587                 return 0;
588
589         down(&queue_io_sem); /* protect against multiple concurrent
590                               * readers on this file */
591  again:
592         spin_lock(&queue_lock);
593         /* need to find next request */
594         while (rp->q.list.next != &cd->queue &&
595                list_entry(rp->q.list.next, struct cache_queue, list)
596                ->reader) {
597                 struct list_head *next = rp->q.list.next;
598                 list_move(&rp->q.list, next);
599         }
600         if (rp->q.list.next == &cd->queue) {
601                 spin_unlock(&queue_lock);
602                 up(&queue_io_sem);
603                 if (rp->offset)
604                         BUG();
605                 return 0;
606         }
607         rq = container_of(rp->q.list.next, struct cache_request, q.list);
608         if (rq->q.reader) BUG();
609         if (rp->offset == 0)
610                 rq->readers++;
611         spin_unlock(&queue_lock);
612
613         if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
614                 err = -EAGAIN;
615                 spin_lock(&queue_lock);
616                 list_move(&rp->q.list, &rq->q.list);
617                 spin_unlock(&queue_lock);
618         } else {
619                 if (rp->offset + count > rq->len)
620                         count = rq->len - rp->offset;
621                 err = -EFAULT;
622                 if (copy_to_user(buf, rq->buf + rp->offset, count))
623                         goto out;
624                 rp->offset += count;
625                 if (rp->offset >= rq->len) {
626                         rp->offset = 0;
627                         spin_lock(&queue_lock);
628                         list_move(&rp->q.list, &rq->q.list);
629                         spin_unlock(&queue_lock);
630                 }
631                 err = 0;
632         }
633  out:
634         if (rp->offset == 0) {
635                 /* need to release rq */
636                 spin_lock(&queue_lock);
637                 rq->readers--;
638                 if (rq->readers == 0 &&
639                     !test_bit(CACHE_PENDING, &rq->item->flags)) {
640                         list_del(&rq->q.list);
641                         spin_unlock(&queue_lock);
642                         cd->cache_put(rq->item, cd);
643                         kfree(rq->buf);
644                         kfree(rq);
645                 } else
646                         spin_unlock(&queue_lock);
647         }
648         if (err == -EAGAIN)
649                 goto again;
650         up(&queue_io_sem);
651         return err ? err :  count;
652 }
653
654 static char write_buf[8192]; /* protected by queue_io_sem */
655
656 static ssize_t
657 cache_write(struct file *filp, const char __user *buf, size_t count,
658             loff_t *ppos)
659 {
660         int err;
661         struct cache_detail *cd = PDE(filp->f_dentry->d_inode)->data;
662
663         if (count == 0)
664                 return 0;
665         if (count >= sizeof(write_buf))
666                 return -EINVAL;
667
668         down(&queue_io_sem);
669
670         if (copy_from_user(write_buf, buf, count)) {
671                 up(&queue_io_sem);
672                 return -EFAULT;
673         }
674         write_buf[count] = '\0';
675         if (cd->cache_parse)
676                 err = cd->cache_parse(cd, write_buf, count);
677         else
678                 err = -EINVAL;
679
680         up(&queue_io_sem);
681         return err ? err : count;
682 }
683
684 static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
685
686 static unsigned int
687 cache_poll(struct file *filp, poll_table *wait)
688 {
689         unsigned int mask;
690         struct cache_reader *rp = filp->private_data;
691         struct cache_queue *cq;
692         struct cache_detail *cd = PDE(filp->f_dentry->d_inode)->data;
693
694         poll_wait(filp, &queue_wait, wait);
695
696         /* alway allow write */
697         mask = POLL_OUT | POLLWRNORM;
698
699         if (!rp)
700                 return mask;
701
702         spin_lock(&queue_lock);
703
704         for (cq= &rp->q; &cq->list != &cd->queue;
705              cq = list_entry(cq->list.next, struct cache_queue, list))
706                 if (!cq->reader) {
707                         mask |= POLLIN | POLLRDNORM;
708                         break;
709                 }
710         spin_unlock(&queue_lock);
711         return mask;
712 }
713
714 static int
715 cache_ioctl(struct inode *ino, struct file *filp,
716             unsigned int cmd, unsigned long arg)
717 {
718         int len = 0;
719         struct cache_reader *rp = filp->private_data;
720         struct cache_queue *cq;
721         struct cache_detail *cd = PDE(ino)->data;
722
723         if (cmd != FIONREAD || !rp)
724                 return -EINVAL;
725
726         spin_lock(&queue_lock);
727
728         /* only find the length remaining in current request,
729          * or the length of the next request
730          */
731         for (cq= &rp->q; &cq->list != &cd->queue;
732              cq = list_entry(cq->list.next, struct cache_queue, list))
733                 if (!cq->reader) {
734                         struct cache_request *cr =
735                                 container_of(cq, struct cache_request, q);
736                         len = cr->len - rp->offset;
737                         break;
738                 }
739         spin_unlock(&queue_lock);
740
741         return put_user(len, (int __user *)arg);
742 }
743
744 static int
745 cache_open(struct inode *inode, struct file *filp)
746 {
747         struct cache_reader *rp = NULL;
748
749         nonseekable_open(inode, filp);
750         if (filp->f_mode & FMODE_READ) {
751                 struct cache_detail *cd = PDE(inode)->data;
752
753                 rp = kmalloc(sizeof(*rp), GFP_KERNEL);
754                 if (!rp)
755                         return -ENOMEM;
756                 rp->offset = 0;
757                 rp->q.reader = 1;
758                 atomic_inc(&cd->readers);
759                 spin_lock(&queue_lock);
760                 list_add(&rp->q.list, &cd->queue);
761                 spin_unlock(&queue_lock);
762         }
763         filp->private_data = rp;
764         return 0;
765 }
766
767 static int
768 cache_release(struct inode *inode, struct file *filp)
769 {
770         struct cache_reader *rp = filp->private_data;
771         struct cache_detail *cd = PDE(inode)->data;
772
773         if (rp) {
774                 spin_lock(&queue_lock);
775                 if (rp->offset) {
776                         struct cache_queue *cq;
777                         for (cq= &rp->q; &cq->list != &cd->queue;
778                              cq = list_entry(cq->list.next, struct cache_queue, list))
779                                 if (!cq->reader) {
780                                         container_of(cq, struct cache_request, q)
781                                                 ->readers--;
782                                         break;
783                                 }
784                         rp->offset = 0;
785                 }
786                 list_del(&rp->q.list);
787                 spin_unlock(&queue_lock);
788
789                 filp->private_data = NULL;
790                 kfree(rp);
791
792                 cd->last_close = get_seconds();
793                 atomic_dec(&cd->readers);
794         }
795         return 0;
796 }
797
798
799
800 static struct file_operations cache_file_operations = {
801         .owner          = THIS_MODULE,
802         .llseek         = no_llseek,
803         .read           = cache_read,
804         .write          = cache_write,
805         .poll           = cache_poll,
806         .ioctl          = cache_ioctl, /* for FIONREAD */
807         .open           = cache_open,
808         .release        = cache_release,
809 };
810
811
812 static void queue_loose(struct cache_detail *detail, struct cache_head *ch)
813 {
814         struct cache_queue *cq;
815         spin_lock(&queue_lock);
816         list_for_each_entry(cq, &detail->queue, list)
817                 if (!cq->reader) {
818                         struct cache_request *cr = container_of(cq, struct cache_request, q);
819                         if (cr->item != ch)
820                                 continue;
821                         if (cr->readers != 0)
822                                 break;
823                         list_del(&cr->q.list);
824                         spin_unlock(&queue_lock);
825                         detail->cache_put(cr->item, detail);
826                         kfree(cr->buf);
827                         kfree(cr);
828                         return;
829                 }
830         spin_unlock(&queue_lock);
831 }
832
833 /*
834  * Support routines for text-based upcalls.
835  * Fields are separated by spaces.
836  * Fields are either mangled to quote space tab newline slosh with slosh
837  * or a hexified with a leading \x
838  * Record is terminated with newline.
839  *
840  */
841
842 void qword_add(char **bpp, int *lp, char *str)
843 {
844         char *bp = *bpp;
845         int len = *lp;
846         char c;
847
848         if (len < 0) return;
849
850         while ((c=*str++) && len)
851                 switch(c) {
852                 case ' ':
853                 case '\t':
854                 case '\n':
855                 case '\\':
856                         if (len >= 4) {
857                                 *bp++ = '\\';
858                                 *bp++ = '0' + ((c & 0300)>>6);
859                                 *bp++ = '0' + ((c & 0070)>>3);
860                                 *bp++ = '0' + ((c & 0007)>>0);
861                         }
862                         len -= 4;
863                         break;
864                 default:
865                         *bp++ = c;
866                         len--;
867                 }
868         if (c || len <1) len = -1;
869         else {
870                 *bp++ = ' ';
871                 len--;
872         }
873         *bpp = bp;
874         *lp = len;
875 }
876
877 void qword_addhex(char **bpp, int *lp, char *buf, int blen)
878 {
879         char *bp = *bpp;
880         int len = *lp;
881
882         if (len < 0) return;
883
884         if (len > 2) {
885                 *bp++ = '\\';
886                 *bp++ = 'x';
887                 len -= 2;
888                 while (blen && len >= 2) {
889                         unsigned char c = *buf++;
890                         *bp++ = '0' + ((c&0xf0)>>4) + (c>=0xa0)*('a'-'9'-1);
891                         *bp++ = '0' + (c&0x0f) + ((c&0x0f)>=0x0a)*('a'-'9'-1);
892                         len -= 2;
893                         blen--;
894                 }
895         }
896         if (blen || len<1) len = -1;
897         else {
898                 *bp++ = ' ';
899                 len--;
900         }
901         *bpp = bp;
902         *lp = len;
903 }
904
905 void warn_no_listener(struct cache_detail *detail)
906 {
907         if (detail->last_warn != detail->last_close) {
908                 detail->last_warn = detail->last_close;
909                 if (detail->warn_no_listener)
910                         detail->warn_no_listener(detail);
911         }
912 }
913
914 /*
915  * register an upcall request to user-space.
916  * Each request is at most one page long.
917  */
918 static int cache_make_upcall(struct cache_detail *detail, struct cache_head *h)
919 {
920
921         char *buf;
922         struct cache_request *crq;
923         char *bp;
924         int len;
925
926         if (detail->cache_request == NULL)
927                 return -EINVAL;
928
929         if (atomic_read(&detail->readers) == 0 &&
930             detail->last_close < get_seconds() - 30) {
931                         warn_no_listener(detail);
932                         return -EINVAL;
933         }
934
935         buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
936         if (!buf)
937                 return -EAGAIN;
938
939         crq = kmalloc(sizeof (*crq), GFP_KERNEL);
940         if (!crq) {
941                 kfree(buf);
942                 return -EAGAIN;
943         }
944
945         bp = buf; len = PAGE_SIZE;
946
947         detail->cache_request(detail, h, &bp, &len);
948
949         if (len < 0) {
950                 kfree(buf);
951                 kfree(crq);
952                 return -EAGAIN;
953         }
954         crq->q.reader = 0;
955         crq->item = cache_get(h);
956         crq->buf = buf;
957         crq->len = PAGE_SIZE - len;
958         crq->readers = 0;
959         spin_lock(&queue_lock);
960         list_add_tail(&crq->q.list, &detail->queue);
961         spin_unlock(&queue_lock);
962         wake_up(&queue_wait);
963         return 0;
964 }
965
966 /*
967  * parse a message from user-space and pass it
968  * to an appropriate cache
969  * Messages are, like requests, separated into fields by
970  * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
971  *
972  * Message is 
973  *   reply cachename expiry key ... content....
974  *
975  * key and content are both parsed by cache 
976  */
977
978 #define isodigit(c) (isdigit(c) && c <= '7')
979 int qword_get(char **bpp, char *dest, int bufsize)
980 {
981         /* return bytes copied, or -1 on error */
982         char *bp = *bpp;
983         int len = 0;
984
985         while (*bp == ' ') bp++;
986
987         if (bp[0] == '\\' && bp[1] == 'x') {
988                 /* HEX STRING */
989                 bp += 2;
990                 while (isxdigit(bp[0]) && isxdigit(bp[1]) && len < bufsize) {
991                         int byte = isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
992                         bp++;
993                         byte <<= 4;
994                         byte |= isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
995                         *dest++ = byte;
996                         bp++;
997                         len++;
998                 }
999         } else {
1000                 /* text with \nnn octal quoting */
1001                 while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1002                         if (*bp == '\\' &&
1003                             isodigit(bp[1]) && (bp[1] <= '3') &&
1004                             isodigit(bp[2]) &&
1005                             isodigit(bp[3])) {
1006                                 int byte = (*++bp -'0');
1007                                 bp++;
1008                                 byte = (byte << 3) | (*bp++ - '0');
1009                                 byte = (byte << 3) | (*bp++ - '0');
1010                                 *dest++ = byte;
1011                                 len++;
1012                         } else {
1013                                 *dest++ = *bp++;
1014                                 len++;
1015                         }
1016                 }
1017         }
1018
1019         if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1020                 return -1;
1021         while (*bp == ' ') bp++;
1022         *bpp = bp;
1023         *dest = '\0';
1024         return len;
1025 }
1026
1027
1028 /*
1029  * support /proc/sunrpc/cache/$CACHENAME/content
1030  * as a seqfile.
1031  * We call ->cache_show passing NULL for the item to
1032  * get a header, then pass each real item in the cache
1033  */
1034
1035 struct handle {
1036         struct cache_detail *cd;
1037 };
1038
1039 static void *c_start(struct seq_file *m, loff_t *pos)
1040 {
1041         loff_t n = *pos;
1042         unsigned hash, entry;
1043         struct cache_head *ch;
1044         struct cache_detail *cd = ((struct handle*)m->private)->cd;
1045         
1046
1047         read_lock(&cd->hash_lock);
1048         if (!n--)
1049                 return SEQ_START_TOKEN;
1050         hash = n >> 32;
1051         entry = n & ((1LL<<32) - 1);
1052
1053         for (ch=cd->hash_table[hash]; ch; ch=ch->next)
1054                 if (!entry--)
1055                         return ch;
1056         n &= ~((1LL<<32) - 1);
1057         do {
1058                 hash++;
1059                 n += 1LL<<32;
1060         } while(hash < cd->hash_size && 
1061                 cd->hash_table[hash]==NULL);
1062         if (hash >= cd->hash_size)
1063                 return NULL;
1064         *pos = n+1;
1065         return cd->hash_table[hash];
1066 }
1067
1068 static void *c_next(struct seq_file *m, void *p, loff_t *pos)
1069 {
1070         struct cache_head *ch = p;
1071         int hash = (*pos >> 32);
1072         struct cache_detail *cd = ((struct handle*)m->private)->cd;
1073
1074         if (p == SEQ_START_TOKEN)
1075                 hash = 0;
1076         else if (ch->next == NULL) {
1077                 hash++;
1078                 *pos += 1LL<<32;
1079         } else {
1080                 ++*pos;
1081                 return ch->next;
1082         }
1083         *pos &= ~((1LL<<32) - 1);
1084         while (hash < cd->hash_size &&
1085                cd->hash_table[hash] == NULL) {
1086                 hash++;
1087                 *pos += 1LL<<32;
1088         }
1089         if (hash >= cd->hash_size)
1090                 return NULL;
1091         ++*pos;
1092         return cd->hash_table[hash];
1093 }
1094
1095 static void c_stop(struct seq_file *m, void *p)
1096 {
1097         struct cache_detail *cd = ((struct handle*)m->private)->cd;
1098         read_unlock(&cd->hash_lock);
1099 }
1100
1101 static int c_show(struct seq_file *m, void *p)
1102 {
1103         struct cache_head *cp = p;
1104         struct cache_detail *cd = ((struct handle*)m->private)->cd;
1105
1106         if (p == SEQ_START_TOKEN)
1107                 return cd->cache_show(m, cd, NULL);
1108
1109         ifdebug(CACHE)
1110                 seq_printf(m, "# expiry=%ld refcnt=%d\n",
1111                            cp->expiry_time, atomic_read(&cp->refcnt));
1112         cache_get(cp);
1113         if (cache_check(cd, cp, NULL))
1114                 /* cache_check does a cache_put on failure */
1115                 seq_printf(m, "# ");
1116         else
1117                 cache_put(cp, cd);
1118
1119         return cd->cache_show(m, cd, cp);
1120 }
1121
1122 struct seq_operations cache_content_op = {
1123         .start  = c_start,
1124         .next   = c_next,
1125         .stop   = c_stop,
1126         .show   = c_show,
1127 };
1128
1129 static int content_open(struct inode *inode, struct file *file)
1130 {
1131         int res;
1132         struct handle *han;
1133         struct cache_detail *cd = PDE(inode)->data;
1134
1135         han = kmalloc(sizeof(*han), GFP_KERNEL);
1136         if (han == NULL)
1137                 return -ENOMEM;
1138
1139         han->cd = cd;
1140
1141         res = seq_open(file, &cache_content_op);
1142         if (res)
1143                 kfree(han);
1144         else
1145                 ((struct seq_file *)file->private_data)->private = han;
1146
1147         return res;
1148 }
1149 static int content_release(struct inode *inode, struct file *file)
1150 {
1151         struct seq_file *m = (struct seq_file *)file->private_data;
1152         struct handle *han = m->private;
1153         kfree(han);
1154         m->private = NULL;
1155         return seq_release(inode, file);
1156 }
1157
1158 static struct file_operations content_file_operations = {
1159         .open           = content_open,
1160         .read           = seq_read,
1161         .llseek         = seq_lseek,
1162         .release        = content_release,
1163 };
1164
1165 static ssize_t read_flush(struct file *file, char __user *buf,
1166                             size_t count, loff_t *ppos)
1167 {
1168         struct cache_detail *cd = PDE(file->f_dentry->d_inode)->data;
1169         char tbuf[20];
1170         unsigned long p = *ppos;
1171         int len;
1172
1173         sprintf(tbuf, "%lu\n", cd->flush_time);
1174         len = strlen(tbuf);
1175         if (p >= len)
1176                 return 0;
1177         len -= p;
1178         if (len > count) len = count;
1179         if (copy_to_user(buf, (void*)(tbuf+p), len))
1180                 len = -EFAULT;
1181         else
1182                 *ppos += len;
1183         return len;
1184 }
1185
1186 static ssize_t write_flush(struct file * file, const char __user * buf,
1187                              size_t count, loff_t *ppos)
1188 {
1189         struct cache_detail *cd = PDE(file->f_dentry->d_inode)->data;
1190         char tbuf[20];
1191         char *ep;
1192         long flushtime;
1193         if (*ppos || count > sizeof(tbuf)-1)
1194                 return -EINVAL;
1195         if (copy_from_user(tbuf, buf, count))
1196                 return -EFAULT;
1197         tbuf[count] = 0;
1198         flushtime = simple_strtoul(tbuf, &ep, 0);
1199         if (*ep && *ep != '\n')
1200                 return -EINVAL;
1201
1202         cd->flush_time = flushtime;
1203         cd->nextcheck = get_seconds();
1204         cache_flush();
1205
1206         *ppos += count;
1207         return count;
1208 }
1209
1210 static struct file_operations cache_flush_operations = {
1211         .open           = nonseekable_open,
1212         .read           = read_flush,
1213         .write          = write_flush,
1214 };