patch-2_6_7-vs1_9_1_12
[linux-2.6.git] / net / sunrpc / cache.c
1 /*
2  * net/sunrpc/cache.c
3  *
4  * Generic code for various authentication-related caches
5  * used by sunrpc clients and servers.
6  *
7  * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
8  *
9  * Released under terms in GPL version 2.  See COPYING.
10  *
11  */
12
13 #include <linux/types.h>
14 #include <linux/fs.h>
15 #include <linux/file.h>
16 #include <linux/slab.h>
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/kmod.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/ctype.h>
23 #include <asm/uaccess.h>
24 #include <linux/poll.h>
25 #include <linux/seq_file.h>
26 #include <linux/proc_fs.h>
27 #include <linux/net.h>
28 #include <linux/workqueue.h>
29 #include <asm/ioctls.h>
30 #include <linux/sunrpc/types.h>
31 #include <linux/sunrpc/cache.h>
32 #include <linux/sunrpc/stats.h>
33
34 #define  RPCDBG_FACILITY RPCDBG_CACHE
35
36 void cache_init(struct cache_head *h)
37 {
38         time_t now = get_seconds();
39         h->next = NULL;
40         h->flags = 0;
41         atomic_set(&h->refcnt, 0);
42         h->expiry_time = now + CACHE_NEW_EXPIRY;
43         h->last_refresh = now;
44 }
45
46
47 static int cache_make_upcall(struct cache_detail *detail, struct cache_head *h);
48 /*
49  * This is the generic cache management routine for all
50  * the authentication caches.
51  * It checks the currency of a cache item and will (later)
52  * initiate an upcall to fill it if needed.
53  *
54  *
55  * Returns 0 if the cache_head can be used, or cache_puts it and returns
56  * -EAGAIN if upcall is pending,
57  * -ENOENT if cache entry was negative
58  */
59 int cache_check(struct cache_detail *detail,
60                     struct cache_head *h, struct cache_req *rqstp)
61 {
62         int rv;
63         long refresh_age, age;
64
65         /* First decide return status as best we can */
66         if (!test_bit(CACHE_VALID, &h->flags) ||
67             h->expiry_time < get_seconds())
68                 rv = -EAGAIN;
69         else if (detail->flush_time > h->last_refresh)
70                 rv = -EAGAIN;
71         else {
72                 /* entry is valid */
73                 if (test_bit(CACHE_NEGATIVE, &h->flags))
74                         rv = -ENOENT;
75                 else rv = 0;
76         }
77
78         /* now see if we want to start an upcall */
79         refresh_age = (h->expiry_time - h->last_refresh);
80         age = get_seconds() - h->last_refresh;
81
82         if (rqstp == NULL) {
83                 if (rv == -EAGAIN)
84                         rv = -ENOENT;
85         } else if (rv == -EAGAIN || age > refresh_age/2) {
86                 dprintk("Want update, refage=%ld, age=%ld\n", refresh_age, age);
87                 if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
88                         switch (cache_make_upcall(detail, h)) {
89                         case -EINVAL:
90                                 clear_bit(CACHE_PENDING, &h->flags);
91                                 if (rv == -EAGAIN) {
92                                         set_bit(CACHE_NEGATIVE, &h->flags);
93                                         cache_fresh(detail, h, get_seconds()+CACHE_NEW_EXPIRY);
94                                         rv = -ENOENT;
95                                 }
96                                 break;
97
98                         case -EAGAIN:
99                                 clear_bit(CACHE_PENDING, &h->flags);
100                                 cache_revisit_request(h);
101                                 break;
102                         }
103                 }
104         }
105
106         if (rv == -EAGAIN)
107                 cache_defer_req(rqstp, h);
108
109         if (rv && h)
110                 detail->cache_put(h, detail);
111         return rv;
112 }
113
114 static void queue_loose(struct cache_detail *detail, struct cache_head *ch);
115
116 void cache_fresh(struct cache_detail *detail,
117                  struct cache_head *head, time_t expiry)
118 {
119
120         head->expiry_time = expiry;
121         head->last_refresh = get_seconds();
122         if (!test_and_set_bit(CACHE_VALID, &head->flags))
123                 cache_revisit_request(head);
124         if (test_and_clear_bit(CACHE_PENDING, &head->flags))
125                 queue_loose(detail, head);
126 }
127
128 /*
129  * caches need to be periodically cleaned.
130  * For this we maintain a list of cache_detail and
131  * a current pointer into that list and into the table
132  * for that entry.
133  *
134  * Each time clean_cache is called it finds the next non-empty entry
135  * in the current table and walks the list in that entry
136  * looking for entries that can be removed.
137  *
138  * An entry gets removed if:
139  * - The expiry is before current time
140  * - The last_refresh time is before the flush_time for that cache
141  *
142  * later we might drop old entries with non-NEVER expiry if that table
143  * is getting 'full' for some definition of 'full'
144  *
145  * The question of "how often to scan a table" is an interesting one
146  * and is answered in part by the use of the "nextcheck" field in the
147  * cache_detail.
148  * When a scan of a table begins, the nextcheck field is set to a time
149  * that is well into the future.
150  * While scanning, if an expiry time is found that is earlier than the
151  * current nextcheck time, nextcheck is set to that expiry time.
152  * If the flush_time is ever set to a time earlier than the nextcheck
153  * time, the nextcheck time is then set to that flush_time.
154  *
155  * A table is then only scanned if the current time is at least
156  * the nextcheck time.
157  * 
158  */
159
160 static LIST_HEAD(cache_list);
161 static spinlock_t cache_list_lock = SPIN_LOCK_UNLOCKED;
162 static struct cache_detail *current_detail;
163 static int current_index;
164
165 static struct file_operations cache_file_operations;
166 static struct file_operations content_file_operations;
167 static struct file_operations cache_flush_operations;
168
169 static void do_cache_clean(void *data);
170 static DECLARE_WORK(cache_cleaner, do_cache_clean, NULL);
171
172 void cache_register(struct cache_detail *cd)
173 {
174         cd->proc_ent = proc_mkdir(cd->name, proc_net_rpc);
175         if (cd->proc_ent) {
176                 struct proc_dir_entry *p;
177                 cd->proc_ent->owner = THIS_MODULE;
178                 cd->channel_ent = cd->content_ent = NULL;
179                 
180                 p = create_proc_entry("flush", S_IFREG|S_IRUSR|S_IWUSR,
181                                       cd->proc_ent);
182                 cd->flush_ent =  p;
183                 if (p) {
184                         p->proc_fops = &cache_flush_operations;
185                         p->owner = THIS_MODULE;
186                         p->data = cd;
187                 }
188  
189                 if (cd->cache_request || cd->cache_parse) {
190                         p = create_proc_entry("channel", S_IFREG|S_IRUSR|S_IWUSR,
191                                               cd->proc_ent);
192                         cd->channel_ent = p;
193                         if (p) {
194                                 p->proc_fops = &cache_file_operations;
195                                 p->owner = THIS_MODULE;
196                                 p->data = cd;
197                         }
198                 }
199                 if (cd->cache_show) {
200                         p = create_proc_entry("content", S_IFREG|S_IRUSR|S_IWUSR,
201                                               cd->proc_ent);
202                         cd->content_ent = p;
203                         if (p) {
204                                 p->proc_fops = &content_file_operations;
205                                 p->owner = THIS_MODULE;
206                                 p->data = cd;
207                         }
208                 }
209         }
210         rwlock_init(&cd->hash_lock);
211         INIT_LIST_HEAD(&cd->queue);
212         spin_lock(&cache_list_lock);
213         cd->nextcheck = 0;
214         cd->entries = 0;
215         atomic_set(&cd->readers, 0);
216         cd->last_close = 0;
217         cd->last_warn = -1;
218         list_add(&cd->others, &cache_list);
219         spin_unlock(&cache_list_lock);
220
221         /* start the cleaning process */
222         schedule_work(&cache_cleaner);
223 }
224
225 int cache_unregister(struct cache_detail *cd)
226 {
227         cache_purge(cd);
228         spin_lock(&cache_list_lock);
229         write_lock(&cd->hash_lock);
230         if (cd->entries || atomic_read(&cd->inuse)) {
231                 write_unlock(&cd->hash_lock);
232                 spin_unlock(&cache_list_lock);
233                 return -EBUSY;
234         }
235         if (current_detail == cd)
236                 current_detail = NULL;
237         list_del_init(&cd->others);
238         write_unlock(&cd->hash_lock);
239         spin_unlock(&cache_list_lock);
240         if (cd->proc_ent) {
241                 if (cd->flush_ent)
242                         remove_proc_entry("flush", cd->proc_ent);
243                 if (cd->channel_ent)
244                         remove_proc_entry("channel", cd->proc_ent);
245                 if (cd->content_ent)
246                         remove_proc_entry("content", cd->proc_ent);
247
248                 cd->proc_ent = NULL;
249                 remove_proc_entry(cd->name, proc_net_rpc);
250         }
251         if (list_empty(&cache_list)) {
252                 /* module must be being unloaded so its safe to kill the worker */
253                 cancel_delayed_work(&cache_cleaner);
254                 flush_scheduled_work();
255         }
256         return 0;
257 }
258
259 struct cache_detail *cache_find(char *name)
260 {
261         struct list_head *l;
262
263         spin_lock(&cache_list_lock);
264         list_for_each(l, &cache_list) {
265                 struct cache_detail *cd = list_entry(l, struct cache_detail, others);
266                 
267                 if (strcmp(cd->name, name)==0) {
268                         atomic_inc(&cd->inuse);
269                         spin_unlock(&cache_list_lock);
270                         return cd;
271                 }
272         }
273         spin_unlock(&cache_list_lock);
274         return NULL;
275 }
276
277 /* cache_drop must be called on any cache returned by
278  * cache_find, after it has been used
279  */
280 void cache_drop(struct cache_detail *detail)
281 {
282         atomic_dec(&detail->inuse);
283 }
284
285 /* clean cache tries to find something to clean
286  * and cleans it.
287  * It returns 1 if it cleaned something,
288  *            0 if it didn't find anything this time
289  *           -1 if it fell off the end of the list.
290  */
291 int cache_clean(void)
292 {
293         int rv = 0;
294         struct list_head *next;
295
296         spin_lock(&cache_list_lock);
297
298         /* find a suitable table if we don't already have one */
299         while (current_detail == NULL ||
300             current_index >= current_detail->hash_size) {
301                 if (current_detail)
302                         next = current_detail->others.next;
303                 else
304                         next = cache_list.next;
305                 if (next == &cache_list) {
306                         current_detail = NULL;
307                         spin_unlock(&cache_list_lock);
308                         return -1;
309                 }
310                 current_detail = list_entry(next, struct cache_detail, others);
311                 if (current_detail->nextcheck > get_seconds())
312                         current_index = current_detail->hash_size;
313                 else {
314                         current_index = 0;
315                         current_detail->nextcheck = get_seconds()+30*60;
316                 }
317         }
318
319         /* find a non-empty bucket in the table */
320         while (current_detail &&
321                current_index < current_detail->hash_size &&
322                current_detail->hash_table[current_index] == NULL)
323                 current_index++;
324
325         /* find a cleanable entry in the bucket and clean it, or set to next bucket */
326         
327         if (current_detail && current_index < current_detail->hash_size) {
328                 struct cache_head *ch, **cp;
329                 struct cache_detail *d;
330                 
331                 write_lock(&current_detail->hash_lock);
332
333                 /* Ok, now to clean this strand */
334                         
335                 cp = & current_detail->hash_table[current_index];
336                 ch = *cp;
337                 for (; ch; cp= & ch->next, ch= *cp) {
338                         if (current_detail->nextcheck > ch->expiry_time)
339                                 current_detail->nextcheck = ch->expiry_time+1;
340                         if (ch->expiry_time >= get_seconds()
341                             && ch->last_refresh >= current_detail->flush_time
342                                 )
343                                 continue;
344                         if (test_and_clear_bit(CACHE_PENDING, &ch->flags))
345                                 queue_loose(current_detail, ch);
346
347                         if (!atomic_read(&ch->refcnt))
348                                 break;
349                 }
350                 if (ch) {
351                         cache_get(ch);
352                         clear_bit(CACHE_HASHED, &ch->flags);
353                         *cp = ch->next;
354                         ch->next = NULL;
355                         current_detail->entries--;
356                         rv = 1;
357                 }
358                 write_unlock(&current_detail->hash_lock);
359                 d = current_detail;
360                 if (!ch)
361                         current_index ++;
362                 spin_unlock(&cache_list_lock);
363                 if (ch)
364                         d->cache_put(ch, d);
365         } else
366                 spin_unlock(&cache_list_lock);
367
368         return rv;
369 }
370
371 /*
372  * We want to regularly clean the cache, so we need to schedule some work ...
373  */
374 static void do_cache_clean(void *data)
375 {
376         int delay = 5;
377         if (cache_clean() == -1)
378                 delay = 30*HZ;
379
380         if (list_empty(&cache_list))
381                 delay = 0;
382
383         if (delay)
384                 schedule_delayed_work(&cache_cleaner, delay);
385 }
386
387
388 /* 
389  * Clean all caches promptly.  This just calls cache_clean
390  * repeatedly until we are sure that every cache has had a chance to 
391  * be fully cleaned
392  */
393 void cache_flush(void)
394 {
395         while (cache_clean() != -1)
396                 cond_resched();
397         while (cache_clean() != -1)
398                 cond_resched();
399 }
400
401 void cache_purge(struct cache_detail *detail)
402 {
403         detail->flush_time = get_seconds()+1;
404         detail->nextcheck = get_seconds();
405         cache_flush();
406 }
407
408
409
410 /*
411  * Deferral and Revisiting of Requests.
412  *
413  * If a cache lookup finds a pending entry, we
414  * need to defer the request and revisit it later.
415  * All deferred requests are stored in a hash table,
416  * indexed by "struct cache_head *".
417  * As it may be wasteful to store a whole request
418  * structure, we allow the request to provide a 
419  * deferred form, which must contain a
420  * 'struct cache_deferred_req'
421  * This cache_deferred_req contains a method to allow
422  * it to be revisited when cache info is available
423  */
424
425 #define DFR_HASHSIZE    (PAGE_SIZE/sizeof(struct list_head))
426 #define DFR_HASH(item)  ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
427
428 #define DFR_MAX 300     /* ??? */
429
430 spinlock_t cache_defer_lock = SPIN_LOCK_UNLOCKED;
431 static LIST_HEAD(cache_defer_list);
432 static struct list_head cache_defer_hash[DFR_HASHSIZE];
433 static int cache_defer_cnt;
434
435 void cache_defer_req(struct cache_req *req, struct cache_head *item)
436 {
437         struct cache_deferred_req *dreq;
438         int hash = DFR_HASH(item);
439
440         dreq = req->defer(req);
441         if (dreq == NULL)
442                 return;
443
444         dreq->item = item;
445         dreq->recv_time = get_seconds();
446
447         spin_lock(&cache_defer_lock);
448
449         list_add(&dreq->recent, &cache_defer_list);
450
451         if (cache_defer_hash[hash].next == NULL)
452                 INIT_LIST_HEAD(&cache_defer_hash[hash]);
453         list_add(&dreq->hash, &cache_defer_hash[hash]);
454
455         /* it is in, now maybe clean up */
456         dreq = NULL;
457         if (++cache_defer_cnt > DFR_MAX) {
458                 /* too much in the cache, randomly drop
459                  * first or last
460                  */
461                 if (net_random()&1) 
462                         dreq = list_entry(cache_defer_list.next,
463                                           struct cache_deferred_req,
464                                           recent);
465                 else
466                         dreq = list_entry(cache_defer_list.prev,
467                                           struct cache_deferred_req,
468                                           recent);
469                 list_del(&dreq->recent);
470                 list_del(&dreq->hash);
471                 cache_defer_cnt--;
472         }
473         spin_unlock(&cache_defer_lock);
474
475         if (dreq) {
476                 /* there was one too many */
477                 dreq->revisit(dreq, 1);
478         }
479         if (test_bit(CACHE_VALID, &item->flags)) {
480                 /* must have just been validated... */
481                 cache_revisit_request(item);
482         }
483 }
484
485 void cache_revisit_request(struct cache_head *item)
486 {
487         struct cache_deferred_req *dreq;
488         struct list_head pending;
489
490         struct list_head *lp;
491         int hash = DFR_HASH(item);
492
493         INIT_LIST_HEAD(&pending);
494         spin_lock(&cache_defer_lock);
495         
496         lp = cache_defer_hash[hash].next;
497         if (lp) {
498                 while (lp != &cache_defer_hash[hash]) {
499                         dreq = list_entry(lp, struct cache_deferred_req, hash);
500                         lp = lp->next;
501                         if (dreq->item == item) {
502                                 list_del(&dreq->hash);
503                                 list_move(&dreq->recent, &pending);
504                                 cache_defer_cnt--;
505                         }
506                 }
507         }
508         spin_unlock(&cache_defer_lock);
509
510         while (!list_empty(&pending)) {
511                 dreq = list_entry(pending.next, struct cache_deferred_req, recent);
512                 list_del_init(&dreq->recent);
513                 dreq->revisit(dreq, 0);
514         }
515 }
516
517 void cache_clean_deferred(void *owner)
518 {
519         struct cache_deferred_req *dreq, *tmp;
520         struct list_head pending;
521
522
523         INIT_LIST_HEAD(&pending);
524         spin_lock(&cache_defer_lock);
525         
526         list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
527                 if (dreq->owner == owner) {
528                         list_del(&dreq->hash);
529                         list_move(&dreq->recent, &pending);
530                         cache_defer_cnt--;
531                 }
532         }
533         spin_unlock(&cache_defer_lock);
534
535         while (!list_empty(&pending)) {
536                 dreq = list_entry(pending.next, struct cache_deferred_req, recent);
537                 list_del_init(&dreq->recent);
538                 dreq->revisit(dreq, 1);
539         }
540 }
541
542 /*
543  * communicate with user-space
544  *
545  * We have a magic /proc file - /proc/sunrpc/cache
546  * On read, you get a full request, or block
547  * On write, an update request is processed
548  * Poll works if anything to read, and always allows write
549  *
550  * Implemented by linked list of requests.  Each open file has 
551  * a ->private that also exists in this list.  New request are added
552  * to the end and may wakeup and preceding readers.
553  * New readers are added to the head.  If, on read, an item is found with
554  * CACHE_UPCALLING clear, we free it from the list.
555  *
556  */
557
558 static spinlock_t queue_lock = SPIN_LOCK_UNLOCKED;
559 static DECLARE_MUTEX(queue_io_sem);
560
561 struct cache_queue {
562         struct list_head        list;
563         int                     reader; /* if 0, then request */
564 };
565 struct cache_request {
566         struct cache_queue      q;
567         struct cache_head       *item;
568         char                    * buf;
569         int                     len;
570         int                     readers;
571 };
572 struct cache_reader {
573         struct cache_queue      q;
574         int                     offset; /* if non-0, we have a refcnt on next request */
575 };
576
577 static ssize_t
578 cache_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
579 {
580         struct cache_reader *rp = filp->private_data;
581         struct cache_request *rq;
582         struct cache_detail *cd = PDE(filp->f_dentry->d_inode)->data;
583         int err;
584
585         if (ppos != &filp->f_pos)
586                 return -ESPIPE;
587
588         if (count == 0)
589                 return 0;
590
591         down(&queue_io_sem); /* protect against multiple concurrent
592                               * readers on this file */
593  again:
594         spin_lock(&queue_lock);
595         /* need to find next request */
596         while (rp->q.list.next != &cd->queue &&
597                list_entry(rp->q.list.next, struct cache_queue, list)
598                ->reader) {
599                 struct list_head *next = rp->q.list.next;
600                 list_move(&rp->q.list, next);
601         }
602         if (rp->q.list.next == &cd->queue) {
603                 spin_unlock(&queue_lock);
604                 up(&queue_io_sem);
605                 if (rp->offset)
606                         BUG();
607                 return 0;
608         }
609         rq = container_of(rp->q.list.next, struct cache_request, q.list);
610         if (rq->q.reader) BUG();
611         if (rp->offset == 0)
612                 rq->readers++;
613         spin_unlock(&queue_lock);
614
615         if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
616                 err = -EAGAIN;
617                 spin_lock(&queue_lock);
618                 list_move(&rp->q.list, &rq->q.list);
619                 spin_unlock(&queue_lock);
620         } else {
621                 if (rp->offset + count > rq->len)
622                         count = rq->len - rp->offset;
623                 err = -EFAULT;
624                 if (copy_to_user(buf, rq->buf + rp->offset, count))
625                         goto out;
626                 rp->offset += count;
627                 if (rp->offset >= rq->len) {
628                         rp->offset = 0;
629                         spin_lock(&queue_lock);
630                         list_move(&rp->q.list, &rq->q.list);
631                         spin_unlock(&queue_lock);
632                 }
633                 err = 0;
634         }
635  out:
636         if (rp->offset == 0) {
637                 /* need to release rq */
638                 spin_lock(&queue_lock);
639                 rq->readers--;
640                 if (rq->readers == 0 &&
641                     !test_bit(CACHE_PENDING, &rq->item->flags)) {
642                         list_del(&rq->q.list);
643                         spin_unlock(&queue_lock);
644                         cd->cache_put(rq->item, cd);
645                         kfree(rq->buf);
646                         kfree(rq);
647                 } else
648                         spin_unlock(&queue_lock);
649         }
650         if (err == -EAGAIN)
651                 goto again;
652         up(&queue_io_sem);
653         return err ? err :  count;
654 }
655
656 static char write_buf[8192]; /* protected by queue_io_sem */
657
658 static ssize_t
659 cache_write(struct file *filp, const char __user *buf, size_t count,
660             loff_t *ppos)
661 {
662         int err;
663         struct cache_detail *cd = PDE(filp->f_dentry->d_inode)->data;
664
665         if (ppos != &filp->f_pos)
666                 return -ESPIPE;
667
668         if (count == 0)
669                 return 0;
670         if (count >= sizeof(write_buf))
671                 return -EINVAL;
672
673         down(&queue_io_sem);
674
675         if (copy_from_user(write_buf, buf, count)) {
676                 up(&queue_io_sem);
677                 return -EFAULT;
678         }
679         write_buf[count] = '\0';
680         if (cd->cache_parse)
681                 err = cd->cache_parse(cd, write_buf, count);
682         else
683                 err = -EINVAL;
684
685         up(&queue_io_sem);
686         return err ? err : count;
687 }
688
689 static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
690
691 static unsigned int
692 cache_poll(struct file *filp, poll_table *wait)
693 {
694         unsigned int mask;
695         struct cache_reader *rp = filp->private_data;
696         struct cache_queue *cq;
697         struct cache_detail *cd = PDE(filp->f_dentry->d_inode)->data;
698
699         poll_wait(filp, &queue_wait, wait);
700
701         /* alway allow write */
702         mask = POLL_OUT | POLLWRNORM;
703
704         if (!rp)
705                 return mask;
706
707         spin_lock(&queue_lock);
708
709         for (cq= &rp->q; &cq->list != &cd->queue;
710              cq = list_entry(cq->list.next, struct cache_queue, list))
711                 if (!cq->reader) {
712                         mask |= POLLIN | POLLRDNORM;
713                         break;
714                 }
715         spin_unlock(&queue_lock);
716         return mask;
717 }
718
719 static int
720 cache_ioctl(struct inode *ino, struct file *filp,
721             unsigned int cmd, unsigned long arg)
722 {
723         int len = 0;
724         struct cache_reader *rp = filp->private_data;
725         struct cache_queue *cq;
726         struct cache_detail *cd = PDE(ino)->data;
727
728         if (cmd != FIONREAD || !rp)
729                 return -EINVAL;
730
731         spin_lock(&queue_lock);
732
733         /* only find the length remaining in current request,
734          * or the length of the next request
735          */
736         for (cq= &rp->q; &cq->list != &cd->queue;
737              cq = list_entry(cq->list.next, struct cache_queue, list))
738                 if (!cq->reader) {
739                         struct cache_request *cr =
740                                 container_of(cq, struct cache_request, q);
741                         len = cr->len - rp->offset;
742                         break;
743                 }
744         spin_unlock(&queue_lock);
745
746         return put_user(len, (int __user *)arg);
747 }
748
749 static int
750 cache_open(struct inode *inode, struct file *filp)
751 {
752         struct cache_reader *rp = NULL;
753
754         if (filp->f_mode & FMODE_READ) {
755                 struct cache_detail *cd = PDE(inode)->data;
756
757                 rp = kmalloc(sizeof(*rp), GFP_KERNEL);
758                 if (!rp)
759                         return -ENOMEM;
760                 rp->offset = 0;
761                 rp->q.reader = 1;
762                 atomic_inc(&cd->readers);
763                 spin_lock(&queue_lock);
764                 list_add(&rp->q.list, &cd->queue);
765                 spin_unlock(&queue_lock);
766         }
767         filp->private_data = rp;
768         return 0;
769 }
770
771 static int
772 cache_release(struct inode *inode, struct file *filp)
773 {
774         struct cache_reader *rp = filp->private_data;
775         struct cache_detail *cd = PDE(inode)->data;
776
777         if (rp) {
778                 spin_lock(&queue_lock);
779                 if (rp->offset) {
780                         struct cache_queue *cq;
781                         for (cq= &rp->q; &cq->list != &cd->queue;
782                              cq = list_entry(cq->list.next, struct cache_queue, list))
783                                 if (!cq->reader) {
784                                         container_of(cq, struct cache_request, q)
785                                                 ->readers--;
786                                         break;
787                                 }
788                         rp->offset = 0;
789                 }
790                 list_del(&rp->q.list);
791                 spin_unlock(&queue_lock);
792
793                 filp->private_data = NULL;
794                 kfree(rp);
795
796                 cd->last_close = get_seconds();
797                 atomic_dec(&cd->readers);
798         }
799         return 0;
800 }
801
802
803
804 static struct file_operations cache_file_operations = {
805         .owner          = THIS_MODULE,
806         .llseek         = no_llseek,
807         .read           = cache_read,
808         .write          = cache_write,
809         .poll           = cache_poll,
810         .ioctl          = cache_ioctl, /* for FIONREAD */
811         .open           = cache_open,
812         .release        = cache_release,
813 };
814
815
816 static void queue_loose(struct cache_detail *detail, struct cache_head *ch)
817 {
818         struct cache_queue *cq;
819         spin_lock(&queue_lock);
820         list_for_each_entry(cq, &detail->queue, list)
821                 if (!cq->reader) {
822                         struct cache_request *cr = container_of(cq, struct cache_request, q);
823                         if (cr->item != ch)
824                                 continue;
825                         if (cr->readers != 0)
826                                 break;
827                         list_del(&cr->q.list);
828                         spin_unlock(&queue_lock);
829                         detail->cache_put(cr->item, detail);
830                         kfree(cr->buf);
831                         kfree(cr);
832                         return;
833                 }
834         spin_unlock(&queue_lock);
835 }
836
837 /*
838  * Support routines for text-based upcalls.
839  * Fields are separated by spaces.
840  * Fields are either mangled to quote space tab newline slosh with slosh
841  * or a hexified with a leading \x
842  * Record is terminated with newline.
843  *
844  */
845
846 void qword_add(char **bpp, int *lp, char *str)
847 {
848         char *bp = *bpp;
849         int len = *lp;
850         char c;
851
852         if (len < 0) return;
853
854         while ((c=*str++) && len)
855                 switch(c) {
856                 case ' ':
857                 case '\t':
858                 case '\n':
859                 case '\\':
860                         if (len >= 4) {
861                                 *bp++ = '\\';
862                                 *bp++ = '0' + ((c & 0300)>>6);
863                                 *bp++ = '0' + ((c & 0070)>>3);
864                                 *bp++ = '0' + ((c & 0007)>>0);
865                         }
866                         len -= 4;
867                         break;
868                 default:
869                         *bp++ = c;
870                         len--;
871                 }
872         if (c || len <1) len = -1;
873         else {
874                 *bp++ = ' ';
875                 len--;
876         }
877         *bpp = bp;
878         *lp = len;
879 }
880
881 void qword_addhex(char **bpp, int *lp, char *buf, int blen)
882 {
883         char *bp = *bpp;
884         int len = *lp;
885
886         if (len < 0) return;
887
888         if (len > 2) {
889                 *bp++ = '\\';
890                 *bp++ = 'x';
891                 len -= 2;
892                 while (blen && len >= 2) {
893                         unsigned char c = *buf++;
894                         *bp++ = '0' + ((c&0xf0)>>4) + (c>=0xa0)*('a'-'9'-1);
895                         *bp++ = '0' + (c&0x0f) + ((c&0x0f)>=0x0a)*('a'-'9'-1);
896                         len -= 2;
897                         blen--;
898                 }
899         }
900         if (blen || len<1) len = -1;
901         else {
902                 *bp++ = ' ';
903                 len--;
904         }
905         *bpp = bp;
906         *lp = len;
907 }
908
909 void warn_no_listener(struct cache_detail *detail)
910 {
911         if (detail->last_warn != detail->last_close) {
912                 detail->last_warn = detail->last_close;
913                 if (detail->warn_no_listener)
914                         detail->warn_no_listener(detail);
915         }
916 }
917
918 /*
919  * register an upcall request to user-space.
920  * Each request is at most one page long.
921  */
922 static int cache_make_upcall(struct cache_detail *detail, struct cache_head *h)
923 {
924
925         char *buf;
926         struct cache_request *crq;
927         char *bp;
928         int len;
929
930         if (detail->cache_request == NULL)
931                 return -EINVAL;
932
933         if (atomic_read(&detail->readers) == 0 &&
934             detail->last_close < get_seconds() - 30) {
935                         warn_no_listener(detail);
936                         return -EINVAL;
937         }
938
939         buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
940         if (!buf)
941                 return -EAGAIN;
942
943         crq = kmalloc(sizeof (*crq), GFP_KERNEL);
944         if (!crq) {
945                 kfree(buf);
946                 return -EAGAIN;
947         }
948
949         bp = buf; len = PAGE_SIZE;
950
951         detail->cache_request(detail, h, &bp, &len);
952
953         if (len < 0) {
954                 kfree(buf);
955                 kfree(crq);
956                 return -EAGAIN;
957         }
958         crq->q.reader = 0;
959         crq->item = cache_get(h);
960         crq->buf = buf;
961         crq->len = PAGE_SIZE - len;
962         crq->readers = 0;
963         spin_lock(&queue_lock);
964         list_add_tail(&crq->q.list, &detail->queue);
965         spin_unlock(&queue_lock);
966         wake_up(&queue_wait);
967         return 0;
968 }
969
970 /*
971  * parse a message from user-space and pass it
972  * to an appropriate cache
973  * Messages are, like requests, separated into fields by
974  * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
975  *
976  * Message is 
977  *   reply cachename expiry key ... content....
978  *
979  * key and content are both parsed by cache 
980  */
981
982 #define isodigit(c) (isdigit(c) && c <= '7')
983 int qword_get(char **bpp, char *dest, int bufsize)
984 {
985         /* return bytes copied, or -1 on error */
986         char *bp = *bpp;
987         int len = 0;
988
989         while (*bp == ' ') bp++;
990
991         if (bp[0] == '\\' && bp[1] == 'x') {
992                 /* HEX STRING */
993                 bp += 2;
994                 while (isxdigit(bp[0]) && isxdigit(bp[1]) && len < bufsize) {
995                         int byte = isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
996                         bp++;
997                         byte <<= 4;
998                         byte |= isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
999                         *dest++ = byte;
1000                         bp++;
1001                         len++;
1002                 }
1003         } else {
1004                 /* text with \nnn octal quoting */
1005                 while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1006                         if (*bp == '\\' &&
1007                             isodigit(bp[1]) && (bp[1] <= '3') &&
1008                             isodigit(bp[2]) &&
1009                             isodigit(bp[3])) {
1010                                 int byte = (*++bp -'0');
1011                                 bp++;
1012                                 byte = (byte << 3) | (*bp++ - '0');
1013                                 byte = (byte << 3) | (*bp++ - '0');
1014                                 *dest++ = byte;
1015                                 len++;
1016                         } else {
1017                                 *dest++ = *bp++;
1018                                 len++;
1019                         }
1020                 }
1021         }
1022
1023         if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1024                 return -1;
1025         while (*bp == ' ') bp++;
1026         *bpp = bp;
1027         *dest = '\0';
1028         return len;
1029 }
1030
1031
1032 /*
1033  * support /proc/sunrpc/cache/$CACHENAME/content
1034  * as a seqfile.
1035  * We call ->cache_show passing NULL for the item to
1036  * get a header, then pass each real item in the cache
1037  */
1038
1039 struct handle {
1040         struct cache_detail *cd;
1041 };
1042
1043 static void *c_start(struct seq_file *m, loff_t *pos)
1044 {
1045         loff_t n = *pos;
1046         unsigned hash, entry;
1047         struct cache_head *ch;
1048         struct cache_detail *cd = ((struct handle*)m->private)->cd;
1049         
1050
1051         read_lock(&cd->hash_lock);
1052         if (!n--)
1053                 return SEQ_START_TOKEN;
1054         hash = n >> 32;
1055         entry = n & ((1LL<<32) - 1);
1056
1057         for (ch=cd->hash_table[hash]; ch; ch=ch->next)
1058                 if (!entry--)
1059                         return ch;
1060         n &= ~((1LL<<32) - 1);
1061         do {
1062                 hash++;
1063                 n += 1LL<<32;
1064         } while(hash < cd->hash_size && 
1065                 cd->hash_table[hash]==NULL);
1066         if (hash >= cd->hash_size)
1067                 return NULL;
1068         *pos = n+1;
1069         return cd->hash_table[hash];
1070 }
1071
1072 static void *c_next(struct seq_file *m, void *p, loff_t *pos)
1073 {
1074         struct cache_head *ch = p;
1075         int hash = (*pos >> 32);
1076         struct cache_detail *cd = ((struct handle*)m->private)->cd;
1077
1078         if (p == SEQ_START_TOKEN)
1079                 hash = 0;
1080         else if (ch->next == NULL) {
1081                 hash++;
1082                 *pos += 1LL<<32;
1083         } else {
1084                 ++*pos;
1085                 return ch->next;
1086         }
1087         *pos &= ~((1LL<<32) - 1);
1088         while (hash < cd->hash_size &&
1089                cd->hash_table[hash] == NULL) {
1090                 hash++;
1091                 *pos += 1LL<<32;
1092         }
1093         if (hash >= cd->hash_size)
1094                 return NULL;
1095         ++*pos;
1096         return cd->hash_table[hash];
1097 }
1098
1099 static void c_stop(struct seq_file *m, void *p)
1100 {
1101         struct cache_detail *cd = ((struct handle*)m->private)->cd;
1102         read_unlock(&cd->hash_lock);
1103 }
1104
1105 static int c_show(struct seq_file *m, void *p)
1106 {
1107         struct cache_head *cp = p;
1108         struct cache_detail *cd = ((struct handle*)m->private)->cd;
1109
1110         if (p == SEQ_START_TOKEN)
1111                 return cd->cache_show(m, cd, NULL);
1112
1113         ifdebug(CACHE)
1114                 seq_printf(m, "# expiry=%ld refcnt=%d\n",
1115                            cp->expiry_time, atomic_read(&cp->refcnt));
1116         cache_get(cp);
1117         if (cache_check(cd, cp, NULL))
1118                 /* cache_check does a cache_put on failure */
1119                 seq_printf(m, "# ");
1120         else
1121                 cache_put(cp, cd);
1122
1123         return cd->cache_show(m, cd, cp);
1124 }
1125
1126 struct seq_operations cache_content_op = {
1127         .start  = c_start,
1128         .next   = c_next,
1129         .stop   = c_stop,
1130         .show   = c_show,
1131 };
1132
1133 static int content_open(struct inode *inode, struct file *file)
1134 {
1135         int res;
1136         struct handle *han;
1137         struct cache_detail *cd = PDE(inode)->data;
1138
1139         han = kmalloc(sizeof(*han), GFP_KERNEL);
1140         if (han == NULL)
1141                 return -ENOMEM;
1142
1143         han->cd = cd;
1144
1145         res = seq_open(file, &cache_content_op);
1146         if (res)
1147                 kfree(han);
1148         else
1149                 ((struct seq_file *)file->private_data)->private = han;
1150
1151         return res;
1152 }
1153 static int content_release(struct inode *inode, struct file *file)
1154 {
1155         struct seq_file *m = (struct seq_file *)file->private_data;
1156         struct handle *han = m->private;
1157         kfree(han);
1158         m->private = NULL;
1159         return seq_release(inode, file);
1160 }
1161
1162 static struct file_operations content_file_operations = {
1163         .open           = content_open,
1164         .read           = seq_read,
1165         .llseek         = seq_lseek,
1166         .release        = content_release,
1167 };
1168
1169 static ssize_t read_flush(struct file *file, char __user *buf,
1170                             size_t count, loff_t *ppos)
1171 {
1172         struct cache_detail *cd = PDE(file->f_dentry->d_inode)->data;
1173         char tbuf[20];
1174         unsigned long p = *ppos;
1175         int len;
1176
1177         sprintf(tbuf, "%lu\n", cd->flush_time);
1178         len = strlen(tbuf);
1179         if (p >= len)
1180                 return 0;
1181         len -= p;
1182         if (len > count) len = count;
1183         if (copy_to_user(buf, (void*)(tbuf+p), len))
1184                 len = -EFAULT;
1185         else
1186                 *ppos += len;
1187         return len;
1188 }
1189
1190 static ssize_t write_flush(struct file * file, const char __user * buf,
1191                              size_t count, loff_t *ppos)
1192 {
1193         struct cache_detail *cd = PDE(file->f_dentry->d_inode)->data;
1194         char tbuf[20];
1195         char *ep;
1196         long flushtime;
1197         if (*ppos || count > sizeof(tbuf)-1)
1198                 return -EINVAL;
1199         if (copy_from_user(tbuf, buf, count))
1200                 return -EFAULT;
1201         tbuf[count] = 0;
1202         flushtime = simple_strtoul(tbuf, &ep, 0);
1203         if (*ep && *ep != '\n')
1204                 return -EINVAL;
1205
1206         cd->flush_time = flushtime;
1207         cd->nextcheck = get_seconds();
1208         cache_flush();
1209
1210         *ppos += count;
1211         return count;
1212 }
1213
1214 static struct file_operations cache_flush_operations = {
1215         .read           = read_flush,
1216         .write          = write_flush,
1217 };