vserver 1.9.5.x5
[linux-2.6.git] / net / sunrpc / sched.c
1 /*
2  * linux/net/sunrpc/sched.c
3  *
4  * Scheduling for synchronous and asynchronous RPC requests.
5  *
6  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
7  * 
8  * TCP NFS related read + write fixes
9  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
10  */
11
12 #include <linux/module.h>
13
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/smp_lock.h>
20 #include <linux/spinlock.h>
21
22 #include <linux/sunrpc/clnt.h>
23 #include <linux/sunrpc/xprt.h>
24
25 #ifdef RPC_DEBUG
26 #define RPCDBG_FACILITY         RPCDBG_SCHED
27 #define RPC_TASK_MAGIC_ID       0xf00baa
28 static int                      rpc_task_id;
29 #endif
30
31 /*
32  * RPC slabs and memory pools
33  */
34 #define RPC_BUFFER_MAXSIZE      (2048)
35 #define RPC_BUFFER_POOLSIZE     (8)
36 #define RPC_TASK_POOLSIZE       (8)
37 static kmem_cache_t     *rpc_task_slabp;
38 static kmem_cache_t     *rpc_buffer_slabp;
39 static mempool_t        *rpc_task_mempool;
40 static mempool_t        *rpc_buffer_mempool;
41
42 static void                     __rpc_default_timer(struct rpc_task *task);
43 static void                     rpciod_killall(void);
44 static void                     rpc_free(struct rpc_task *task);
45
46 static void                     rpc_async_schedule(void *);
47
48 /*
49  * RPC tasks that create another task (e.g. for contacting the portmapper)
50  * will wait on this queue for their child's completion
51  */
52 static RPC_WAITQ(childq, "childq");
53
54 /*
55  * RPC tasks sit here while waiting for conditions to improve.
56  */
57 static RPC_WAITQ(delay_queue, "delayq");
58
59 /*
60  * All RPC tasks are linked into this list
61  */
62 static LIST_HEAD(all_tasks);
63
64 /*
65  * rpciod-related stuff
66  */
67 static DECLARE_MUTEX(rpciod_sema);
68 static unsigned int             rpciod_users;
69 static struct workqueue_struct *rpciod_workqueue;
70
71 /*
72  * Spinlock for other critical sections of code.
73  */
74 static DEFINE_SPINLOCK(rpc_sched_lock);
75
76 /*
77  * Disable the timer for a given RPC task. Should be called with
78  * queue->lock and bh_disabled in order to avoid races within
79  * rpc_run_timer().
80  */
81 static inline void
82 __rpc_disable_timer(struct rpc_task *task)
83 {
84         dprintk("RPC: %4d disabling timer\n", task->tk_pid);
85         task->tk_timeout_fn = NULL;
86         task->tk_timeout = 0;
87 }
88
89 /*
90  * Run a timeout function.
91  * We use the callback in order to allow __rpc_wake_up_task()
92  * and friends to disable the timer synchronously on SMP systems
93  * without calling del_timer_sync(). The latter could cause a
94  * deadlock if called while we're holding spinlocks...
95  */
96 static void rpc_run_timer(struct rpc_task *task)
97 {
98         void (*callback)(struct rpc_task *);
99
100         callback = task->tk_timeout_fn;
101         task->tk_timeout_fn = NULL;
102         if (callback && RPC_IS_QUEUED(task)) {
103                 dprintk("RPC: %4d running timer\n", task->tk_pid);
104                 callback(task);
105         }
106         smp_mb__before_clear_bit();
107         clear_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate);
108         smp_mb__after_clear_bit();
109 }
110
111 /*
112  * Set up a timer for the current task.
113  */
114 static inline void
115 __rpc_add_timer(struct rpc_task *task, rpc_action timer)
116 {
117         if (!task->tk_timeout)
118                 return;
119
120         dprintk("RPC: %4d setting alarm for %lu ms\n",
121                         task->tk_pid, task->tk_timeout * 1000 / HZ);
122
123         if (timer)
124                 task->tk_timeout_fn = timer;
125         else
126                 task->tk_timeout_fn = __rpc_default_timer;
127         set_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate);
128         mod_timer(&task->tk_timer, jiffies + task->tk_timeout);
129 }
130
131 /*
132  * Delete any timer for the current task. Because we use del_timer_sync(),
133  * this function should never be called while holding queue->lock.
134  */
135 static inline void
136 rpc_delete_timer(struct rpc_task *task)
137 {
138         if (test_and_clear_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate)) {
139                 del_singleshot_timer_sync(&task->tk_timer);
140                 dprintk("RPC: %4d deleting timer\n", task->tk_pid);
141         }
142 }
143
144 /*
145  * Add new request to a priority queue.
146  */
147 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, struct rpc_task *task)
148 {
149         struct list_head *q;
150         struct rpc_task *t;
151
152         INIT_LIST_HEAD(&task->u.tk_wait.links);
153         q = &queue->tasks[task->tk_priority];
154         if (unlikely(task->tk_priority > queue->maxpriority))
155                 q = &queue->tasks[queue->maxpriority];
156         list_for_each_entry(t, q, u.tk_wait.list) {
157                 if (t->tk_cookie == task->tk_cookie) {
158                         list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
159                         return;
160                 }
161         }
162         list_add_tail(&task->u.tk_wait.list, q);
163 }
164
165 /*
166  * Add new request to wait queue.
167  *
168  * Swapper tasks always get inserted at the head of the queue.
169  * This should avoid many nasty memory deadlocks and hopefully
170  * improve overall performance.
171  * Everyone else gets appended to the queue to ensure proper FIFO behavior.
172  */
173 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
174 {
175         BUG_ON (RPC_IS_QUEUED(task));
176
177         if (RPC_IS_PRIORITY(queue))
178                 __rpc_add_wait_queue_priority(queue, task);
179         else if (RPC_IS_SWAPPER(task))
180                 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
181         else
182                 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
183         task->u.tk_wait.rpc_waitq = queue;
184         rpc_set_queued(task);
185
186         dprintk("RPC: %4d added to queue %p \"%s\"\n",
187                                 task->tk_pid, queue, rpc_qname(queue));
188 }
189
190 /*
191  * Remove request from a priority queue.
192  */
193 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
194 {
195         struct rpc_task *t;
196
197         if (!list_empty(&task->u.tk_wait.links)) {
198                 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
199                 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
200                 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
201         }
202         list_del(&task->u.tk_wait.list);
203 }
204
205 /*
206  * Remove request from queue.
207  * Note: must be called with spin lock held.
208  */
209 static void __rpc_remove_wait_queue(struct rpc_task *task)
210 {
211         struct rpc_wait_queue *queue;
212         queue = task->u.tk_wait.rpc_waitq;
213
214         if (RPC_IS_PRIORITY(queue))
215                 __rpc_remove_wait_queue_priority(task);
216         else
217                 list_del(&task->u.tk_wait.list);
218         dprintk("RPC: %4d removed from queue %p \"%s\"\n",
219                                 task->tk_pid, queue, rpc_qname(queue));
220 }
221
222 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
223 {
224         queue->priority = priority;
225         queue->count = 1 << (priority * 2);
226 }
227
228 static inline void rpc_set_waitqueue_cookie(struct rpc_wait_queue *queue, unsigned long cookie)
229 {
230         queue->cookie = cookie;
231         queue->nr = RPC_BATCH_COUNT;
232 }
233
234 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
235 {
236         rpc_set_waitqueue_priority(queue, queue->maxpriority);
237         rpc_set_waitqueue_cookie(queue, 0);
238 }
239
240 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, int maxprio)
241 {
242         int i;
243
244         spin_lock_init(&queue->lock);
245         for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
246                 INIT_LIST_HEAD(&queue->tasks[i]);
247         queue->maxpriority = maxprio;
248         rpc_reset_waitqueue_priority(queue);
249 #ifdef RPC_DEBUG
250         queue->name = qname;
251 #endif
252 }
253
254 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
255 {
256         __rpc_init_priority_wait_queue(queue, qname, RPC_PRIORITY_HIGH);
257 }
258
259 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
260 {
261         __rpc_init_priority_wait_queue(queue, qname, 0);
262 }
263 EXPORT_SYMBOL(rpc_init_wait_queue);
264
265 /*
266  * Make an RPC task runnable.
267  *
268  * Note: If the task is ASYNC, this must be called with 
269  * the spinlock held to protect the wait queue operation.
270  */
271 static void rpc_make_runnable(struct rpc_task *task)
272 {
273         int do_ret;
274
275         BUG_ON(task->tk_timeout_fn);
276         do_ret = rpc_test_and_set_running(task);
277         rpc_clear_queued(task);
278         if (do_ret)
279                 return;
280         if (RPC_IS_ASYNC(task)) {
281                 int status;
282
283                 INIT_WORK(&task->u.tk_work, rpc_async_schedule, (void *)task);
284                 status = queue_work(task->tk_workqueue, &task->u.tk_work);
285                 if (status < 0) {
286                         printk(KERN_WARNING "RPC: failed to add task to queue: error: %d!\n", status);
287                         task->tk_status = status;
288                         return;
289                 }
290         } else
291                 wake_up(&task->u.tk_wait.waitq);
292 }
293
294 /*
295  * Place a newly initialized task on the workqueue.
296  */
297 static inline void
298 rpc_schedule_run(struct rpc_task *task)
299 {
300         /* Don't run a child twice! */
301         if (RPC_IS_ACTIVATED(task))
302                 return;
303         task->tk_active = 1;
304         rpc_make_runnable(task);
305 }
306
307 /*
308  * Prepare for sleeping on a wait queue.
309  * By always appending tasks to the list we ensure FIFO behavior.
310  * NB: An RPC task will only receive interrupt-driven events as long
311  * as it's on a wait queue.
312  */
313 static void __rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
314                         rpc_action action, rpc_action timer)
315 {
316         dprintk("RPC: %4d sleep_on(queue \"%s\" time %ld)\n", task->tk_pid,
317                                 rpc_qname(q), jiffies);
318
319         if (!RPC_IS_ASYNC(task) && !RPC_IS_ACTIVATED(task)) {
320                 printk(KERN_ERR "RPC: Inactive synchronous task put to sleep!\n");
321                 return;
322         }
323
324         /* Mark the task as being activated if so needed */
325         if (!RPC_IS_ACTIVATED(task))
326                 task->tk_active = 1;
327
328         __rpc_add_wait_queue(q, task);
329
330         BUG_ON(task->tk_callback != NULL);
331         task->tk_callback = action;
332         __rpc_add_timer(task, timer);
333 }
334
335 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
336                                 rpc_action action, rpc_action timer)
337 {
338         /*
339          * Protect the queue operations.
340          */
341         spin_lock_bh(&q->lock);
342         __rpc_sleep_on(q, task, action, timer);
343         spin_unlock_bh(&q->lock);
344 }
345
346 /**
347  * __rpc_do_wake_up_task - wake up a single rpc_task
348  * @task: task to be woken up
349  *
350  * Caller must hold queue->lock, and have cleared the task queued flag.
351  */
352 static void __rpc_do_wake_up_task(struct rpc_task *task)
353 {
354         dprintk("RPC: %4d __rpc_wake_up_task (now %ld)\n", task->tk_pid, jiffies);
355
356 #ifdef RPC_DEBUG
357         BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
358 #endif
359         /* Has the task been executed yet? If not, we cannot wake it up! */
360         if (!RPC_IS_ACTIVATED(task)) {
361                 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
362                 return;
363         }
364
365         __rpc_disable_timer(task);
366         __rpc_remove_wait_queue(task);
367
368         rpc_make_runnable(task);
369
370         dprintk("RPC:      __rpc_wake_up_task done\n");
371 }
372
373 /*
374  * Wake up the specified task
375  */
376 static void __rpc_wake_up_task(struct rpc_task *task)
377 {
378         if (rpc_start_wakeup(task)) {
379                 if (RPC_IS_QUEUED(task))
380                         __rpc_do_wake_up_task(task);
381                 rpc_finish_wakeup(task);
382         }
383 }
384
385 /*
386  * Default timeout handler if none specified by user
387  */
388 static void
389 __rpc_default_timer(struct rpc_task *task)
390 {
391         dprintk("RPC: %d timeout (default timer)\n", task->tk_pid);
392         task->tk_status = -ETIMEDOUT;
393         rpc_wake_up_task(task);
394 }
395
396 /*
397  * Wake up the specified task
398  */
399 void rpc_wake_up_task(struct rpc_task *task)
400 {
401         if (rpc_start_wakeup(task)) {
402                 if (RPC_IS_QUEUED(task)) {
403                         struct rpc_wait_queue *queue = task->u.tk_wait.rpc_waitq;
404
405                         spin_lock_bh(&queue->lock);
406                         __rpc_do_wake_up_task(task);
407                         spin_unlock_bh(&queue->lock);
408                 }
409                 rpc_finish_wakeup(task);
410         }
411 }
412
413 /*
414  * Wake up the next task on a priority queue.
415  */
416 static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue)
417 {
418         struct list_head *q;
419         struct rpc_task *task;
420
421         /*
422          * Service a batch of tasks from a single cookie.
423          */
424         q = &queue->tasks[queue->priority];
425         if (!list_empty(q)) {
426                 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
427                 if (queue->cookie == task->tk_cookie) {
428                         if (--queue->nr)
429                                 goto out;
430                         list_move_tail(&task->u.tk_wait.list, q);
431                 }
432                 /*
433                  * Check if we need to switch queues.
434                  */
435                 if (--queue->count)
436                         goto new_cookie;
437         }
438
439         /*
440          * Service the next queue.
441          */
442         do {
443                 if (q == &queue->tasks[0])
444                         q = &queue->tasks[queue->maxpriority];
445                 else
446                         q = q - 1;
447                 if (!list_empty(q)) {
448                         task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
449                         goto new_queue;
450                 }
451         } while (q != &queue->tasks[queue->priority]);
452
453         rpc_reset_waitqueue_priority(queue);
454         return NULL;
455
456 new_queue:
457         rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
458 new_cookie:
459         rpc_set_waitqueue_cookie(queue, task->tk_cookie);
460 out:
461         __rpc_wake_up_task(task);
462         return task;
463 }
464
465 /*
466  * Wake up the next task on the wait queue.
467  */
468 struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue)
469 {
470         struct rpc_task *task = NULL;
471
472         dprintk("RPC:      wake_up_next(%p \"%s\")\n", queue, rpc_qname(queue));
473         spin_lock_bh(&queue->lock);
474         if (RPC_IS_PRIORITY(queue))
475                 task = __rpc_wake_up_next_priority(queue);
476         else {
477                 task_for_first(task, &queue->tasks[0])
478                         __rpc_wake_up_task(task);
479         }
480         spin_unlock_bh(&queue->lock);
481
482         return task;
483 }
484
485 /**
486  * rpc_wake_up - wake up all rpc_tasks
487  * @queue: rpc_wait_queue on which the tasks are sleeping
488  *
489  * Grabs queue->lock
490  */
491 void rpc_wake_up(struct rpc_wait_queue *queue)
492 {
493         struct rpc_task *task;
494
495         struct list_head *head;
496         spin_lock_bh(&queue->lock);
497         head = &queue->tasks[queue->maxpriority];
498         for (;;) {
499                 while (!list_empty(head)) {
500                         task = list_entry(head->next, struct rpc_task, u.tk_wait.list);
501                         __rpc_wake_up_task(task);
502                 }
503                 if (head == &queue->tasks[0])
504                         break;
505                 head--;
506         }
507         spin_unlock_bh(&queue->lock);
508 }
509
510 /**
511  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
512  * @queue: rpc_wait_queue on which the tasks are sleeping
513  * @status: status value to set
514  *
515  * Grabs queue->lock
516  */
517 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
518 {
519         struct list_head *head;
520         struct rpc_task *task;
521
522         spin_lock_bh(&queue->lock);
523         head = &queue->tasks[queue->maxpriority];
524         for (;;) {
525                 while (!list_empty(head)) {
526                         task = list_entry(head->next, struct rpc_task, u.tk_wait.list);
527                         task->tk_status = status;
528                         __rpc_wake_up_task(task);
529                 }
530                 if (head == &queue->tasks[0])
531                         break;
532                 head--;
533         }
534         spin_unlock_bh(&queue->lock);
535 }
536
537 /*
538  * Run a task at a later time
539  */
540 static void     __rpc_atrun(struct rpc_task *);
541 void
542 rpc_delay(struct rpc_task *task, unsigned long delay)
543 {
544         task->tk_timeout = delay;
545         rpc_sleep_on(&delay_queue, task, NULL, __rpc_atrun);
546 }
547
548 static void
549 __rpc_atrun(struct rpc_task *task)
550 {
551         task->tk_status = 0;
552         rpc_wake_up_task(task);
553 }
554
555 /*
556  * This is the RPC `scheduler' (or rather, the finite state machine).
557  */
558 static int __rpc_execute(struct rpc_task *task)
559 {
560         int             status = 0;
561
562         dprintk("RPC: %4d rpc_execute flgs %x\n",
563                                 task->tk_pid, task->tk_flags);
564
565         BUG_ON(RPC_IS_QUEUED(task));
566
567  restarted:
568         while (1) {
569                 /*
570                  * Garbage collection of pending timers...
571                  */
572                 rpc_delete_timer(task);
573
574                 /*
575                  * Execute any pending callback.
576                  */
577                 if (RPC_DO_CALLBACK(task)) {
578                         /* Define a callback save pointer */
579                         void (*save_callback)(struct rpc_task *);
580         
581                         /* 
582                          * If a callback exists, save it, reset it,
583                          * call it.
584                          * The save is needed to stop from resetting
585                          * another callback set within the callback handler
586                          * - Dave
587                          */
588                         save_callback=task->tk_callback;
589                         task->tk_callback=NULL;
590                         lock_kernel();
591                         save_callback(task);
592                         unlock_kernel();
593                 }
594
595                 /*
596                  * Perform the next FSM step.
597                  * tk_action may be NULL when the task has been killed
598                  * by someone else.
599                  */
600                 if (!RPC_IS_QUEUED(task)) {
601                         if (!task->tk_action)
602                                 break;
603                         lock_kernel();
604                         task->tk_action(task);
605                         unlock_kernel();
606                 }
607
608                 /*
609                  * Lockless check for whether task is sleeping or not.
610                  */
611                 if (!RPC_IS_QUEUED(task))
612                         continue;
613                 rpc_clear_running(task);
614                 if (RPC_IS_ASYNC(task)) {
615                         /* Careful! we may have raced... */
616                         if (RPC_IS_QUEUED(task))
617                                 return 0;
618                         if (rpc_test_and_set_running(task))
619                                 return 0;
620                         continue;
621                 }
622
623                 /* sync task: sleep here */
624                 dprintk("RPC: %4d sync task going to sleep\n", task->tk_pid);
625                 if (RPC_TASK_UNINTERRUPTIBLE(task)) {
626                         __wait_event(task->u.tk_wait.waitq, !RPC_IS_QUEUED(task));
627                 } else {
628                         __wait_event_interruptible(task->u.tk_wait.waitq, !RPC_IS_QUEUED(task), status);
629                         /*
630                          * When a sync task receives a signal, it exits with
631                          * -ERESTARTSYS. In order to catch any callbacks that
632                          * clean up after sleeping on some queue, we don't
633                          * break the loop here, but go around once more.
634                          */
635                         if (status == -ERESTARTSYS) {
636                                 dprintk("RPC: %4d got signal\n", task->tk_pid);
637                                 task->tk_flags |= RPC_TASK_KILLED;
638                                 rpc_exit(task, -ERESTARTSYS);
639                                 rpc_wake_up_task(task);
640                         }
641                 }
642                 rpc_set_running(task);
643                 dprintk("RPC: %4d sync task resuming\n", task->tk_pid);
644         }
645
646         if (task->tk_exit) {
647                 lock_kernel();
648                 task->tk_exit(task);
649                 unlock_kernel();
650                 /* If tk_action is non-null, the user wants us to restart */
651                 if (task->tk_action) {
652                         if (!RPC_ASSASSINATED(task)) {
653                                 /* Release RPC slot and buffer memory */
654                                 if (task->tk_rqstp)
655                                         xprt_release(task);
656                                 rpc_free(task);
657                                 goto restarted;
658                         }
659                         printk(KERN_ERR "RPC: dead task tries to walk away.\n");
660                 }
661         }
662
663         dprintk("RPC: %4d exit() = %d\n", task->tk_pid, task->tk_status);
664         status = task->tk_status;
665
666         /* Release all resources associated with the task */
667         rpc_release_task(task);
668         return status;
669 }
670
671 /*
672  * User-visible entry point to the scheduler.
673  *
674  * This may be called recursively if e.g. an async NFS task updates
675  * the attributes and finds that dirty pages must be flushed.
676  * NOTE: Upon exit of this function the task is guaranteed to be
677  *       released. In particular note that tk_release() will have
678  *       been called, so your task memory may have been freed.
679  */
680 int
681 rpc_execute(struct rpc_task *task)
682 {
683         BUG_ON(task->tk_active);
684
685         task->tk_active = 1;
686         rpc_set_running(task);
687         return __rpc_execute(task);
688 }
689
690 static void rpc_async_schedule(void *arg)
691 {
692         __rpc_execute((struct rpc_task *)arg);
693 }
694
695 /*
696  * Allocate memory for RPC purposes.
697  *
698  * We try to ensure that some NFS reads and writes can always proceed
699  * by using a mempool when allocating 'small' buffers.
700  * In order to avoid memory starvation triggering more writebacks of
701  * NFS requests, we use GFP_NOFS rather than GFP_KERNEL.
702  */
703 void *
704 rpc_malloc(struct rpc_task *task, size_t size)
705 {
706         int     gfp;
707
708         if (task->tk_flags & RPC_TASK_SWAPPER)
709                 gfp = GFP_ATOMIC;
710         else
711                 gfp = GFP_NOFS;
712
713         if (size > RPC_BUFFER_MAXSIZE) {
714                 task->tk_buffer =  kmalloc(size, gfp);
715                 if (task->tk_buffer)
716                         task->tk_bufsize = size;
717         } else {
718                 task->tk_buffer =  mempool_alloc(rpc_buffer_mempool, gfp);
719                 if (task->tk_buffer)
720                         task->tk_bufsize = RPC_BUFFER_MAXSIZE;
721         }
722         return task->tk_buffer;
723 }
724
725 static void
726 rpc_free(struct rpc_task *task)
727 {
728         if (task->tk_buffer) {
729                 if (task->tk_bufsize == RPC_BUFFER_MAXSIZE)
730                         mempool_free(task->tk_buffer, rpc_buffer_mempool);
731                 else
732                         kfree(task->tk_buffer);
733                 task->tk_buffer = NULL;
734                 task->tk_bufsize = 0;
735         }
736 }
737
738 /*
739  * Creation and deletion of RPC task structures
740  */
741 void rpc_init_task(struct rpc_task *task, struct rpc_clnt *clnt, rpc_action callback, int flags)
742 {
743         memset(task, 0, sizeof(*task));
744         init_timer(&task->tk_timer);
745         task->tk_timer.data     = (unsigned long) task;
746         task->tk_timer.function = (void (*)(unsigned long)) rpc_run_timer;
747         task->tk_client = clnt;
748         task->tk_flags  = flags;
749         task->tk_exit   = callback;
750         if (current->uid != current->fsuid || current->gid != current->fsgid)
751                 task->tk_flags |= RPC_TASK_SETUID;
752
753         /* Initialize retry counters */
754         task->tk_garb_retry = 2;
755         task->tk_cred_retry = 2;
756         task->tk_suid_retry = 1;
757
758         task->tk_priority = RPC_PRIORITY_NORMAL;
759         task->tk_cookie = (unsigned long)current;
760
761         /* Initialize workqueue for async tasks */
762         task->tk_workqueue = rpciod_workqueue;
763         if (!RPC_IS_ASYNC(task))
764                 init_waitqueue_head(&task->u.tk_wait.waitq);
765
766         if (clnt) {
767                 atomic_inc(&clnt->cl_users);
768                 if (clnt->cl_softrtry)
769                         task->tk_flags |= RPC_TASK_SOFT;
770                 if (!clnt->cl_intr)
771                         task->tk_flags |= RPC_TASK_NOINTR;
772         }
773
774 #ifdef RPC_DEBUG
775         task->tk_magic = RPC_TASK_MAGIC_ID;
776         task->tk_pid = rpc_task_id++;
777 #endif
778         /* Add to global list of all tasks */
779         spin_lock(&rpc_sched_lock);
780         list_add_tail(&task->tk_task, &all_tasks);
781         spin_unlock(&rpc_sched_lock);
782
783         dprintk("RPC: %4d new task procpid %d\n", task->tk_pid,
784                                 current->pid);
785 }
786
787 static struct rpc_task *
788 rpc_alloc_task(void)
789 {
790         return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
791 }
792
793 static void
794 rpc_default_free_task(struct rpc_task *task)
795 {
796         dprintk("RPC: %4d freeing task\n", task->tk_pid);
797         mempool_free(task, rpc_task_mempool);
798 }
799
800 /*
801  * Create a new task for the specified client.  We have to
802  * clean up after an allocation failure, as the client may
803  * have specified "oneshot".
804  */
805 struct rpc_task *
806 rpc_new_task(struct rpc_clnt *clnt, rpc_action callback, int flags)
807 {
808         struct rpc_task *task;
809
810         task = rpc_alloc_task();
811         if (!task)
812                 goto cleanup;
813
814         rpc_init_task(task, clnt, callback, flags);
815
816         /* Replace tk_release */
817         task->tk_release = rpc_default_free_task;
818
819         dprintk("RPC: %4d allocated task\n", task->tk_pid);
820         task->tk_flags |= RPC_TASK_DYNAMIC;
821 out:
822         return task;
823
824 cleanup:
825         /* Check whether to release the client */
826         if (clnt) {
827                 printk("rpc_new_task: failed, users=%d, oneshot=%d\n",
828                         atomic_read(&clnt->cl_users), clnt->cl_oneshot);
829                 atomic_inc(&clnt->cl_users); /* pretend we were used ... */
830                 rpc_release_client(clnt);
831         }
832         goto out;
833 }
834
835 void rpc_release_task(struct rpc_task *task)
836 {
837         dprintk("RPC: %4d release task\n", task->tk_pid);
838
839 #ifdef RPC_DEBUG
840         BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
841 #endif
842
843         /* Remove from global task list */
844         spin_lock(&rpc_sched_lock);
845         list_del(&task->tk_task);
846         spin_unlock(&rpc_sched_lock);
847
848         BUG_ON (RPC_IS_QUEUED(task));
849         task->tk_active = 0;
850
851         /* Synchronously delete any running timer */
852         rpc_delete_timer(task);
853
854         /* Release resources */
855         if (task->tk_rqstp)
856                 xprt_release(task);
857         if (task->tk_msg.rpc_cred)
858                 rpcauth_unbindcred(task);
859         rpc_free(task);
860         if (task->tk_client) {
861                 rpc_release_client(task->tk_client);
862                 task->tk_client = NULL;
863         }
864
865 #ifdef RPC_DEBUG
866         task->tk_magic = 0;
867 #endif
868         if (task->tk_release)
869                 task->tk_release(task);
870 }
871
872 /**
873  * rpc_find_parent - find the parent of a child task.
874  * @child: child task
875  *
876  * Checks that the parent task is still sleeping on the
877  * queue 'childq'. If so returns a pointer to the parent.
878  * Upon failure returns NULL.
879  *
880  * Caller must hold childq.lock
881  */
882 static inline struct rpc_task *rpc_find_parent(struct rpc_task *child)
883 {
884         struct rpc_task *task, *parent;
885         struct list_head *le;
886
887         parent = (struct rpc_task *) child->tk_calldata;
888         task_for_each(task, le, &childq.tasks[0])
889                 if (task == parent)
890                         return parent;
891
892         return NULL;
893 }
894
895 static void rpc_child_exit(struct rpc_task *child)
896 {
897         struct rpc_task *parent;
898
899         spin_lock_bh(&childq.lock);
900         if ((parent = rpc_find_parent(child)) != NULL) {
901                 parent->tk_status = child->tk_status;
902                 __rpc_wake_up_task(parent);
903         }
904         spin_unlock_bh(&childq.lock);
905 }
906
907 /*
908  * Note: rpc_new_task releases the client after a failure.
909  */
910 struct rpc_task *
911 rpc_new_child(struct rpc_clnt *clnt, struct rpc_task *parent)
912 {
913         struct rpc_task *task;
914
915         task = rpc_new_task(clnt, NULL, RPC_TASK_ASYNC | RPC_TASK_CHILD);
916         if (!task)
917                 goto fail;
918         task->tk_exit = rpc_child_exit;
919         task->tk_calldata = parent;
920         return task;
921
922 fail:
923         parent->tk_status = -ENOMEM;
924         return NULL;
925 }
926
927 void rpc_run_child(struct rpc_task *task, struct rpc_task *child, rpc_action func)
928 {
929         spin_lock_bh(&childq.lock);
930         /* N.B. Is it possible for the child to have already finished? */
931         __rpc_sleep_on(&childq, task, func, NULL);
932         rpc_schedule_run(child);
933         spin_unlock_bh(&childq.lock);
934 }
935
936 /*
937  * Kill all tasks for the given client.
938  * XXX: kill their descendants as well?
939  */
940 void rpc_killall_tasks(struct rpc_clnt *clnt)
941 {
942         struct rpc_task *rovr;
943         struct list_head *le;
944
945         dprintk("RPC:      killing all tasks for client %p\n", clnt);
946
947         /*
948          * Spin lock all_tasks to prevent changes...
949          */
950         spin_lock(&rpc_sched_lock);
951         alltask_for_each(rovr, le, &all_tasks) {
952                 if (! RPC_IS_ACTIVATED(rovr))
953                         continue;
954                 if (!clnt || rovr->tk_client == clnt) {
955                         rovr->tk_flags |= RPC_TASK_KILLED;
956                         rpc_exit(rovr, -EIO);
957                         rpc_wake_up_task(rovr);
958                 }
959         }
960         spin_unlock(&rpc_sched_lock);
961 }
962
963 static DECLARE_MUTEX_LOCKED(rpciod_running);
964
965 static void rpciod_killall(void)
966 {
967         unsigned long flags;
968
969         while (!list_empty(&all_tasks)) {
970                 clear_thread_flag(TIF_SIGPENDING);
971                 rpc_killall_tasks(NULL);
972                 flush_workqueue(rpciod_workqueue);
973                 if (!list_empty(&all_tasks)) {
974                         dprintk("rpciod_killall: waiting for tasks to exit\n");
975                         yield();
976                 }
977         }
978
979         spin_lock_irqsave(&current->sighand->siglock, flags);
980         recalc_sigpending();
981         spin_unlock_irqrestore(&current->sighand->siglock, flags);
982 }
983
984 /*
985  * Start up the rpciod process if it's not already running.
986  */
987 int
988 rpciod_up(void)
989 {
990         struct workqueue_struct *wq;
991         int error = 0;
992
993         down(&rpciod_sema);
994         dprintk("rpciod_up: users %d\n", rpciod_users);
995         rpciod_users++;
996         if (rpciod_workqueue)
997                 goto out;
998         /*
999          * If there's no pid, we should be the first user.
1000          */
1001         if (rpciod_users > 1)
1002                 printk(KERN_WARNING "rpciod_up: no workqueue, %d users??\n", rpciod_users);
1003         /*
1004          * Create the rpciod thread and wait for it to start.
1005          */
1006         error = -ENOMEM;
1007         wq = create_workqueue("rpciod");
1008         if (wq == NULL) {
1009                 printk(KERN_WARNING "rpciod_up: create workqueue failed, error=%d\n", error);
1010                 rpciod_users--;
1011                 goto out;
1012         }
1013         rpciod_workqueue = wq;
1014         error = 0;
1015 out:
1016         up(&rpciod_sema);
1017         return error;
1018 }
1019
1020 void
1021 rpciod_down(void)
1022 {
1023         down(&rpciod_sema);
1024         dprintk("rpciod_down sema %d\n", rpciod_users);
1025         if (rpciod_users) {
1026                 if (--rpciod_users)
1027                         goto out;
1028         } else
1029                 printk(KERN_WARNING "rpciod_down: no users??\n");
1030
1031         if (!rpciod_workqueue) {
1032                 dprintk("rpciod_down: Nothing to do!\n");
1033                 goto out;
1034         }
1035         rpciod_killall();
1036
1037         destroy_workqueue(rpciod_workqueue);
1038         rpciod_workqueue = NULL;
1039  out:
1040         up(&rpciod_sema);
1041 }
1042
1043 #ifdef RPC_DEBUG
1044 void rpc_show_tasks(void)
1045 {
1046         struct list_head *le;
1047         struct rpc_task *t;
1048
1049         spin_lock(&rpc_sched_lock);
1050         if (list_empty(&all_tasks)) {
1051                 spin_unlock(&rpc_sched_lock);
1052                 return;
1053         }
1054         printk("-pid- proc flgs status -client- -prog- --rqstp- -timeout "
1055                 "-rpcwait -action- --exit--\n");
1056         alltask_for_each(t, le, &all_tasks) {
1057                 const char *rpc_waitq = "none";
1058
1059                 if (RPC_IS_QUEUED(t))
1060                         rpc_waitq = rpc_qname(t->u.tk_wait.rpc_waitq);
1061
1062                 printk("%05d %04d %04x %06d %8p %6d %8p %08ld %8s %8p %8p\n",
1063                         t->tk_pid,
1064                         (t->tk_msg.rpc_proc ? t->tk_msg.rpc_proc->p_proc : -1),
1065                         t->tk_flags, t->tk_status,
1066                         t->tk_client,
1067                         (t->tk_client ? t->tk_client->cl_prog : 0),
1068                         t->tk_rqstp, t->tk_timeout,
1069                         rpc_waitq,
1070                         t->tk_action, t->tk_exit);
1071         }
1072         spin_unlock(&rpc_sched_lock);
1073 }
1074 #endif
1075
1076 void
1077 rpc_destroy_mempool(void)
1078 {
1079         if (rpc_buffer_mempool)
1080                 mempool_destroy(rpc_buffer_mempool);
1081         if (rpc_task_mempool)
1082                 mempool_destroy(rpc_task_mempool);
1083         if (rpc_task_slabp && kmem_cache_destroy(rpc_task_slabp))
1084                 printk(KERN_INFO "rpc_task: not all structures were freed\n");
1085         if (rpc_buffer_slabp && kmem_cache_destroy(rpc_buffer_slabp))
1086                 printk(KERN_INFO "rpc_buffers: not all structures were freed\n");
1087 }
1088
1089 int
1090 rpc_init_mempool(void)
1091 {
1092         rpc_task_slabp = kmem_cache_create("rpc_tasks",
1093                                              sizeof(struct rpc_task),
1094                                              0, SLAB_HWCACHE_ALIGN,
1095                                              NULL, NULL);
1096         if (!rpc_task_slabp)
1097                 goto err_nomem;
1098         rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1099                                              RPC_BUFFER_MAXSIZE,
1100                                              0, SLAB_HWCACHE_ALIGN,
1101                                              NULL, NULL);
1102         if (!rpc_buffer_slabp)
1103                 goto err_nomem;
1104         rpc_task_mempool = mempool_create(RPC_TASK_POOLSIZE,
1105                                             mempool_alloc_slab,
1106                                             mempool_free_slab,
1107                                             rpc_task_slabp);
1108         if (!rpc_task_mempool)
1109                 goto err_nomem;
1110         rpc_buffer_mempool = mempool_create(RPC_BUFFER_POOLSIZE,
1111                                             mempool_alloc_slab,
1112                                             mempool_free_slab,
1113                                             rpc_buffer_slabp);
1114         if (!rpc_buffer_mempool)
1115                 goto err_nomem;
1116         return 0;
1117 err_nomem:
1118         rpc_destroy_mempool();
1119         return -ENOMEM;
1120 }