fedora core 6 1.2949 + vserver 2.2.0
[linux-2.6.git] / security / selinux / hooks.c
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *            Chris Vance, <cvance@nai.com>
8  *            Wayne Salamon, <wsalamon@nai.com>
9  *            James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
14  *                          <dgoeddel@trustedcs.com>
15  *  Copyright (C) 2006 Hewlett-Packard Development Company, L.P.
16  *                     Paul Moore, <paul.moore@hp.com>
17  *
18  *      This program is free software; you can redistribute it and/or modify
19  *      it under the terms of the GNU General Public License version 2,
20  *      as published by the Free Software Foundation.
21  */
22
23 #include <linux/module.h>
24 #include <linux/init.h>
25 #include <linux/kernel.h>
26 #include <linux/tracehook.h>
27 #include <linux/errno.h>
28 #include <linux/sched.h>
29 #include <linux/security.h>
30 #include <linux/xattr.h>
31 #include <linux/capability.h>
32 #include <linux/unistd.h>
33 #include <linux/mm.h>
34 #include <linux/mman.h>
35 #include <linux/slab.h>
36 #include <linux/pagemap.h>
37 #include <linux/swap.h>
38 #include <linux/smp_lock.h>
39 #include <linux/spinlock.h>
40 #include <linux/syscalls.h>
41 #include <linux/file.h>
42 #include <linux/namei.h>
43 #include <linux/mount.h>
44 #include <linux/ext2_fs.h>
45 #include <linux/proc_fs.h>
46 #include <linux/kd.h>
47 #include <linux/netfilter_ipv4.h>
48 #include <linux/netfilter_ipv6.h>
49 #include <linux/tty.h>
50 #include <net/icmp.h>
51 #include <net/ip.h>             /* for sysctl_local_port_range[] */
52 #include <net/tcp.h>            /* struct or_callable used in sock_rcv_skb */
53 #include <asm/uaccess.h>
54 #include <asm/ioctls.h>
55 #include <linux/bitops.h>
56 #include <linux/interrupt.h>
57 #include <linux/netdevice.h>    /* for network interface checks */
58 #include <linux/netlink.h>
59 #include <linux/tcp.h>
60 #include <linux/udp.h>
61 #include <linux/dccp.h>
62 #include <linux/quota.h>
63 #include <linux/un.h>           /* for Unix socket types */
64 #include <net/af_unix.h>        /* for Unix socket types */
65 #include <linux/parser.h>
66 #include <linux/nfs_mount.h>
67 #include <net/ipv6.h>
68 #include <linux/hugetlb.h>
69 #include <linux/personality.h>
70 #include <linux/sysctl.h>
71 #include <linux/audit.h>
72 #include <linux/string.h>
73 #include <linux/selinux.h>
74 #include <linux/mutex.h>
75
76 #include "avc.h"
77 #include "objsec.h"
78 #include "netif.h"
79 #include "xfrm.h"
80 #include "selinux_netlabel.h"
81
82 #define XATTR_SELINUX_SUFFIX "selinux"
83 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX
84
85 extern unsigned int policydb_loaded_version;
86 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
87 extern int selinux_compat_net;
88
89 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
90 int selinux_enforcing = 0;
91
92 static int __init enforcing_setup(char *str)
93 {
94         selinux_enforcing = simple_strtol(str,NULL,0);
95         return 1;
96 }
97 __setup("enforcing=", enforcing_setup);
98 #endif
99
100 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
101 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
102
103 static int __init selinux_enabled_setup(char *str)
104 {
105         selinux_enabled = simple_strtol(str, NULL, 0);
106         return 1;
107 }
108 __setup("selinux=", selinux_enabled_setup);
109 #else
110 int selinux_enabled = 1;
111 #endif
112
113 /* Original (dummy) security module. */
114 static struct security_operations *original_ops = NULL;
115
116 /* Minimal support for a secondary security module,
117    just to allow the use of the dummy or capability modules.
118    The owlsm module can alternatively be used as a secondary
119    module as long as CONFIG_OWLSM_FD is not enabled. */
120 static struct security_operations *secondary_ops = NULL;
121
122 /* Lists of inode and superblock security structures initialized
123    before the policy was loaded. */
124 static LIST_HEAD(superblock_security_head);
125 static DEFINE_SPINLOCK(sb_security_lock);
126
127 static struct kmem_cache *sel_inode_cache;
128
129 /* Return security context for a given sid or just the context 
130    length if the buffer is null or length is 0 */
131 static int selinux_getsecurity(u32 sid, void *buffer, size_t size)
132 {
133         char *context;
134         unsigned len;
135         int rc;
136
137         rc = security_sid_to_context(sid, &context, &len);
138         if (rc)
139                 return rc;
140
141         if (!buffer || !size)
142                 goto getsecurity_exit;
143
144         if (size < len) {
145                 len = -ERANGE;
146                 goto getsecurity_exit;
147         }
148         memcpy(buffer, context, len);
149
150 getsecurity_exit:
151         kfree(context);
152         return len;
153 }
154
155 /* Allocate and free functions for each kind of security blob. */
156
157 static int task_alloc_security(struct task_struct *task)
158 {
159         struct task_security_struct *tsec;
160
161         tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
162         if (!tsec)
163                 return -ENOMEM;
164
165         tsec->task = task;
166         tsec->osid = tsec->sid = SECINITSID_UNLABELED;
167         task->security = tsec;
168
169         return 0;
170 }
171
172 static void task_free_security(struct task_struct *task)
173 {
174         struct task_security_struct *tsec = task->security;
175         task->security = NULL;
176         kfree(tsec);
177 }
178
179 static int inode_alloc_security(struct inode *inode)
180 {
181         struct task_security_struct *tsec = current->security;
182         struct inode_security_struct *isec;
183
184         isec = kmem_cache_alloc(sel_inode_cache, GFP_KERNEL);
185         if (!isec)
186                 return -ENOMEM;
187
188         memset(isec, 0, sizeof(*isec));
189         mutex_init(&isec->lock);
190         INIT_LIST_HEAD(&isec->list);
191         isec->inode = inode;
192         isec->sid = SECINITSID_UNLABELED;
193         isec->sclass = SECCLASS_FILE;
194         isec->task_sid = tsec->sid;
195         inode->i_security = isec;
196
197         return 0;
198 }
199
200 static void inode_free_security(struct inode *inode)
201 {
202         struct inode_security_struct *isec = inode->i_security;
203         struct superblock_security_struct *sbsec = inode->i_sb->s_security;
204
205         spin_lock(&sbsec->isec_lock);
206         if (!list_empty(&isec->list))
207                 list_del_init(&isec->list);
208         spin_unlock(&sbsec->isec_lock);
209
210         inode->i_security = NULL;
211         kmem_cache_free(sel_inode_cache, isec);
212 }
213
214 static int file_alloc_security(struct file *file)
215 {
216         struct task_security_struct *tsec = current->security;
217         struct file_security_struct *fsec;
218
219         fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
220         if (!fsec)
221                 return -ENOMEM;
222
223         fsec->file = file;
224         fsec->sid = tsec->sid;
225         fsec->fown_sid = tsec->sid;
226         file->f_security = fsec;
227
228         return 0;
229 }
230
231 static void file_free_security(struct file *file)
232 {
233         struct file_security_struct *fsec = file->f_security;
234         file->f_security = NULL;
235         kfree(fsec);
236 }
237
238 static int superblock_alloc_security(struct super_block *sb)
239 {
240         struct superblock_security_struct *sbsec;
241
242         sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
243         if (!sbsec)
244                 return -ENOMEM;
245
246         mutex_init(&sbsec->lock);
247         INIT_LIST_HEAD(&sbsec->list);
248         INIT_LIST_HEAD(&sbsec->isec_head);
249         spin_lock_init(&sbsec->isec_lock);
250         sbsec->sb = sb;
251         sbsec->sid = SECINITSID_UNLABELED;
252         sbsec->def_sid = SECINITSID_FILE;
253         sbsec->mntpoint_sid = SECINITSID_UNLABELED;
254         sb->s_security = sbsec;
255
256         return 0;
257 }
258
259 static void superblock_free_security(struct super_block *sb)
260 {
261         struct superblock_security_struct *sbsec = sb->s_security;
262
263         spin_lock(&sb_security_lock);
264         if (!list_empty(&sbsec->list))
265                 list_del_init(&sbsec->list);
266         spin_unlock(&sb_security_lock);
267
268         sb->s_security = NULL;
269         kfree(sbsec);
270 }
271
272 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority)
273 {
274         struct sk_security_struct *ssec;
275
276         ssec = kzalloc(sizeof(*ssec), priority);
277         if (!ssec)
278                 return -ENOMEM;
279
280         ssec->sk = sk;
281         ssec->peer_sid = SECINITSID_UNLABELED;
282         ssec->sid = SECINITSID_UNLABELED;
283         sk->sk_security = ssec;
284
285         selinux_netlbl_sk_security_init(ssec, family);
286
287         return 0;
288 }
289
290 static void sk_free_security(struct sock *sk)
291 {
292         struct sk_security_struct *ssec = sk->sk_security;
293
294         sk->sk_security = NULL;
295         kfree(ssec);
296 }
297
298 /* The security server must be initialized before
299    any labeling or access decisions can be provided. */
300 extern int ss_initialized;
301
302 /* The file system's label must be initialized prior to use. */
303
304 static char *labeling_behaviors[6] = {
305         "uses xattr",
306         "uses transition SIDs",
307         "uses task SIDs",
308         "uses genfs_contexts",
309         "not configured for labeling",
310         "uses mountpoint labeling",
311 };
312
313 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
314
315 static inline int inode_doinit(struct inode *inode)
316 {
317         return inode_doinit_with_dentry(inode, NULL);
318 }
319
320 enum {
321         Opt_context = 1,
322         Opt_fscontext = 2,
323         Opt_defcontext = 4,
324         Opt_rootcontext = 8,
325 };
326
327 static match_table_t tokens = {
328         {Opt_context, "context=%s"},
329         {Opt_fscontext, "fscontext=%s"},
330         {Opt_defcontext, "defcontext=%s"},
331         {Opt_rootcontext, "rootcontext=%s"},
332 };
333
334 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
335
336 static int may_context_mount_sb_relabel(u32 sid,
337                         struct superblock_security_struct *sbsec,
338                         struct task_security_struct *tsec)
339 {
340         int rc;
341
342         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
343                           FILESYSTEM__RELABELFROM, NULL);
344         if (rc)
345                 return rc;
346
347         rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
348                           FILESYSTEM__RELABELTO, NULL);
349         return rc;
350 }
351
352 static int may_context_mount_inode_relabel(u32 sid,
353                         struct superblock_security_struct *sbsec,
354                         struct task_security_struct *tsec)
355 {
356         int rc;
357         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
358                           FILESYSTEM__RELABELFROM, NULL);
359         if (rc)
360                 return rc;
361
362         rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
363                           FILESYSTEM__ASSOCIATE, NULL);
364         return rc;
365 }
366
367 static int try_context_mount(struct super_block *sb, void *data)
368 {
369         char *context = NULL, *defcontext = NULL;
370         char *fscontext = NULL, *rootcontext = NULL;
371         const char *name;
372         u32 sid;
373         int alloc = 0, rc = 0, seen = 0;
374         struct task_security_struct *tsec = current->security;
375         struct superblock_security_struct *sbsec = sb->s_security;
376
377         if (!data)
378                 goto out;
379
380         name = sb->s_type->name;
381
382         if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) {
383
384                 /* NFS we understand. */
385                 if (!strcmp(name, "nfs")) {
386                         struct nfs_mount_data *d = data;
387
388                         if (d->version <  NFS_MOUNT_VERSION)
389                                 goto out;
390
391                         if (d->context[0]) {
392                                 context = d->context;
393                                 seen |= Opt_context;
394                         }
395                 } else
396                         goto out;
397
398         } else {
399                 /* Standard string-based options. */
400                 char *p, *options = data;
401
402                 while ((p = strsep(&options, "|")) != NULL) {
403                         int token;
404                         substring_t args[MAX_OPT_ARGS];
405
406                         if (!*p)
407                                 continue;
408
409                         token = match_token(p, tokens, args);
410
411                         switch (token) {
412                         case Opt_context:
413                                 if (seen & (Opt_context|Opt_defcontext)) {
414                                         rc = -EINVAL;
415                                         printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
416                                         goto out_free;
417                                 }
418                                 context = match_strdup(&args[0]);
419                                 if (!context) {
420                                         rc = -ENOMEM;
421                                         goto out_free;
422                                 }
423                                 if (!alloc)
424                                         alloc = 1;
425                                 seen |= Opt_context;
426                                 break;
427
428                         case Opt_fscontext:
429                                 if (seen & Opt_fscontext) {
430                                         rc = -EINVAL;
431                                         printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
432                                         goto out_free;
433                                 }
434                                 fscontext = match_strdup(&args[0]);
435                                 if (!fscontext) {
436                                         rc = -ENOMEM;
437                                         goto out_free;
438                                 }
439                                 if (!alloc)
440                                         alloc = 1;
441                                 seen |= Opt_fscontext;
442                                 break;
443
444                         case Opt_rootcontext:
445                                 if (seen & Opt_rootcontext) {
446                                         rc = -EINVAL;
447                                         printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
448                                         goto out_free;
449                                 }
450                                 rootcontext = match_strdup(&args[0]);
451                                 if (!rootcontext) {
452                                         rc = -ENOMEM;
453                                         goto out_free;
454                                 }
455                                 if (!alloc)
456                                         alloc = 1;
457                                 seen |= Opt_rootcontext;
458                                 break;
459
460                         case Opt_defcontext:
461                                 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
462                                         rc = -EINVAL;
463                                         printk(KERN_WARNING "SELinux:  "
464                                                "defcontext option is invalid "
465                                                "for this filesystem type\n");
466                                         goto out_free;
467                                 }
468                                 if (seen & (Opt_context|Opt_defcontext)) {
469                                         rc = -EINVAL;
470                                         printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
471                                         goto out_free;
472                                 }
473                                 defcontext = match_strdup(&args[0]);
474                                 if (!defcontext) {
475                                         rc = -ENOMEM;
476                                         goto out_free;
477                                 }
478                                 if (!alloc)
479                                         alloc = 1;
480                                 seen |= Opt_defcontext;
481                                 break;
482
483                         default:
484                                 rc = -EINVAL;
485                                 printk(KERN_WARNING "SELinux:  unknown mount "
486                                        "option\n");
487                                 goto out_free;
488
489                         }
490                 }
491         }
492
493         if (!seen)
494                 goto out;
495
496         /* sets the context of the superblock for the fs being mounted. */
497         if (fscontext) {
498                 rc = security_context_to_sid(fscontext, strlen(fscontext), &sid);
499                 if (rc) {
500                         printk(KERN_WARNING "SELinux: security_context_to_sid"
501                                "(%s) failed for (dev %s, type %s) errno=%d\n",
502                                fscontext, sb->s_id, name, rc);
503                         goto out_free;
504                 }
505
506                 rc = may_context_mount_sb_relabel(sid, sbsec, tsec);
507                 if (rc)
508                         goto out_free;
509
510                 sbsec->sid = sid;
511         }
512
513         /*
514          * Switch to using mount point labeling behavior.
515          * sets the label used on all file below the mountpoint, and will set
516          * the superblock context if not already set.
517          */
518         if (context) {
519                 rc = security_context_to_sid(context, strlen(context), &sid);
520                 if (rc) {
521                         printk(KERN_WARNING "SELinux: security_context_to_sid"
522                                "(%s) failed for (dev %s, type %s) errno=%d\n",
523                                context, sb->s_id, name, rc);
524                         goto out_free;
525                 }
526
527                 if (!fscontext) {
528                         rc = may_context_mount_sb_relabel(sid, sbsec, tsec);
529                         if (rc)
530                                 goto out_free;
531                         sbsec->sid = sid;
532                 } else {
533                         rc = may_context_mount_inode_relabel(sid, sbsec, tsec);
534                         if (rc)
535                                 goto out_free;
536                 }
537                 sbsec->mntpoint_sid = sid;
538
539                 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
540         }
541
542         if (rootcontext) {
543                 struct inode *inode = sb->s_root->d_inode;
544                 struct inode_security_struct *isec = inode->i_security;
545                 rc = security_context_to_sid(rootcontext, strlen(rootcontext), &sid);
546                 if (rc) {
547                         printk(KERN_WARNING "SELinux: security_context_to_sid"
548                                "(%s) failed for (dev %s, type %s) errno=%d\n",
549                                rootcontext, sb->s_id, name, rc);
550                         goto out_free;
551                 }
552
553                 rc = may_context_mount_inode_relabel(sid, sbsec, tsec);
554                 if (rc)
555                         goto out_free;
556
557                 isec->sid = sid;
558                 isec->initialized = 1;
559         }
560
561         if (defcontext) {
562                 rc = security_context_to_sid(defcontext, strlen(defcontext), &sid);
563                 if (rc) {
564                         printk(KERN_WARNING "SELinux: security_context_to_sid"
565                                "(%s) failed for (dev %s, type %s) errno=%d\n",
566                                defcontext, sb->s_id, name, rc);
567                         goto out_free;
568                 }
569
570                 if (sid == sbsec->def_sid)
571                         goto out_free;
572
573                 rc = may_context_mount_inode_relabel(sid, sbsec, tsec);
574                 if (rc)
575                         goto out_free;
576
577                 sbsec->def_sid = sid;
578         }
579
580 out_free:
581         if (alloc) {
582                 kfree(context);
583                 kfree(defcontext);
584                 kfree(fscontext);
585                 kfree(rootcontext);
586         }
587 out:
588         return rc;
589 }
590
591 static int superblock_doinit(struct super_block *sb, void *data)
592 {
593         struct superblock_security_struct *sbsec = sb->s_security;
594         struct dentry *root = sb->s_root;
595         struct inode *inode = root->d_inode;
596         int rc = 0;
597
598         mutex_lock(&sbsec->lock);
599         if (sbsec->initialized)
600                 goto out;
601
602         if (!ss_initialized) {
603                 /* Defer initialization until selinux_complete_init,
604                    after the initial policy is loaded and the security
605                    server is ready to handle calls. */
606                 spin_lock(&sb_security_lock);
607                 if (list_empty(&sbsec->list))
608                         list_add(&sbsec->list, &superblock_security_head);
609                 spin_unlock(&sb_security_lock);
610                 goto out;
611         }
612
613         /* Determine the labeling behavior to use for this filesystem type. */
614         rc = security_fs_use(sb->s_type->name, &sbsec->behavior, &sbsec->sid);
615         if (rc) {
616                 printk(KERN_WARNING "%s:  security_fs_use(%s) returned %d\n",
617                        __FUNCTION__, sb->s_type->name, rc);
618                 goto out;
619         }
620
621         rc = try_context_mount(sb, data);
622         if (rc)
623                 goto out;
624
625         if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
626                 /* Make sure that the xattr handler exists and that no
627                    error other than -ENODATA is returned by getxattr on
628                    the root directory.  -ENODATA is ok, as this may be
629                    the first boot of the SELinux kernel before we have
630                    assigned xattr values to the filesystem. */
631                 if (!inode->i_op->getxattr) {
632                         printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
633                                "xattr support\n", sb->s_id, sb->s_type->name);
634                         rc = -EOPNOTSUPP;
635                         goto out;
636                 }
637                 rc = inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
638                 if (rc < 0 && rc != -ENODATA) {
639                         if (rc == -EOPNOTSUPP)
640                                 printk(KERN_WARNING "SELinux: (dev %s, type "
641                                        "%s) has no security xattr handler\n",
642                                        sb->s_id, sb->s_type->name);
643                         else
644                                 printk(KERN_WARNING "SELinux: (dev %s, type "
645                                        "%s) getxattr errno %d\n", sb->s_id,
646                                        sb->s_type->name, -rc);
647                         goto out;
648                 }
649         }
650
651         if (strcmp(sb->s_type->name, "proc") == 0)
652                 sbsec->proc = 1;
653
654         sbsec->initialized = 1;
655
656         if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors)) {
657                 printk(KERN_INFO "SELinux: initialized (dev %s, type %s), unknown behavior\n",
658                        sb->s_id, sb->s_type->name);
659         }
660         else {
661                 printk(KERN_INFO "SELinux: initialized (dev %s, type %s), %s\n",
662                        sb->s_id, sb->s_type->name,
663                        labeling_behaviors[sbsec->behavior-1]);
664         }
665
666         /* Initialize the root inode. */
667         rc = inode_doinit_with_dentry(sb->s_root->d_inode, sb->s_root);
668
669         /* Initialize any other inodes associated with the superblock, e.g.
670            inodes created prior to initial policy load or inodes created
671            during get_sb by a pseudo filesystem that directly
672            populates itself. */
673         spin_lock(&sbsec->isec_lock);
674 next_inode:
675         if (!list_empty(&sbsec->isec_head)) {
676                 struct inode_security_struct *isec =
677                                 list_entry(sbsec->isec_head.next,
678                                            struct inode_security_struct, list);
679                 struct inode *inode = isec->inode;
680                 spin_unlock(&sbsec->isec_lock);
681                 inode = igrab(inode);
682                 if (inode) {
683                         if (!IS_PRIVATE (inode))
684                                 inode_doinit(inode);
685                         iput(inode);
686                 }
687                 spin_lock(&sbsec->isec_lock);
688                 list_del_init(&isec->list);
689                 goto next_inode;
690         }
691         spin_unlock(&sbsec->isec_lock);
692 out:
693         mutex_unlock(&sbsec->lock);
694         return rc;
695 }
696
697 static inline u16 inode_mode_to_security_class(umode_t mode)
698 {
699         switch (mode & S_IFMT) {
700         case S_IFSOCK:
701                 return SECCLASS_SOCK_FILE;
702         case S_IFLNK:
703                 return SECCLASS_LNK_FILE;
704         case S_IFREG:
705                 return SECCLASS_FILE;
706         case S_IFBLK:
707                 return SECCLASS_BLK_FILE;
708         case S_IFDIR:
709                 return SECCLASS_DIR;
710         case S_IFCHR:
711                 return SECCLASS_CHR_FILE;
712         case S_IFIFO:
713                 return SECCLASS_FIFO_FILE;
714
715         }
716
717         return SECCLASS_FILE;
718 }
719
720 static inline int default_protocol_stream(int protocol)
721 {
722         return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
723 }
724
725 static inline int default_protocol_dgram(int protocol)
726 {
727         return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
728 }
729
730 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
731 {
732         switch (family) {
733         case PF_UNIX:
734                 switch (type) {
735                 case SOCK_STREAM:
736                 case SOCK_SEQPACKET:
737                         return SECCLASS_UNIX_STREAM_SOCKET;
738                 case SOCK_DGRAM:
739                         return SECCLASS_UNIX_DGRAM_SOCKET;
740                 }
741                 break;
742         case PF_INET:
743         case PF_INET6:
744                 switch (type) {
745                 case SOCK_STREAM:
746                         if (default_protocol_stream(protocol))
747                                 return SECCLASS_TCP_SOCKET;
748                         else
749                                 return SECCLASS_RAWIP_SOCKET;
750                 case SOCK_DGRAM:
751                         if (default_protocol_dgram(protocol))
752                                 return SECCLASS_UDP_SOCKET;
753                         else
754                                 return SECCLASS_RAWIP_SOCKET;
755                 case SOCK_DCCP:
756                         return SECCLASS_DCCP_SOCKET;
757                 default:
758                         return SECCLASS_RAWIP_SOCKET;
759                 }
760                 break;
761         case PF_NETLINK:
762                 switch (protocol) {
763                 case NETLINK_ROUTE:
764                         return SECCLASS_NETLINK_ROUTE_SOCKET;
765                 case NETLINK_FIREWALL:
766                         return SECCLASS_NETLINK_FIREWALL_SOCKET;
767                 case NETLINK_INET_DIAG:
768                         return SECCLASS_NETLINK_TCPDIAG_SOCKET;
769                 case NETLINK_NFLOG:
770                         return SECCLASS_NETLINK_NFLOG_SOCKET;
771                 case NETLINK_XFRM:
772                         return SECCLASS_NETLINK_XFRM_SOCKET;
773                 case NETLINK_SELINUX:
774                         return SECCLASS_NETLINK_SELINUX_SOCKET;
775                 case NETLINK_AUDIT:
776                         return SECCLASS_NETLINK_AUDIT_SOCKET;
777                 case NETLINK_IP6_FW:
778                         return SECCLASS_NETLINK_IP6FW_SOCKET;
779                 case NETLINK_DNRTMSG:
780                         return SECCLASS_NETLINK_DNRT_SOCKET;
781                 case NETLINK_KOBJECT_UEVENT:
782                         return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
783                 default:
784                         return SECCLASS_NETLINK_SOCKET;
785                 }
786         case PF_PACKET:
787                 return SECCLASS_PACKET_SOCKET;
788         case PF_KEY:
789                 return SECCLASS_KEY_SOCKET;
790         case PF_APPLETALK:
791                 return SECCLASS_APPLETALK_SOCKET;
792         }
793
794         return SECCLASS_SOCKET;
795 }
796
797 #ifdef CONFIG_PROC_FS
798 static int selinux_proc_get_sid(struct proc_dir_entry *de,
799                                 u16 tclass,
800                                 u32 *sid)
801 {
802         int buflen, rc;
803         char *buffer, *path, *end;
804
805         buffer = (char*)__get_free_page(GFP_KERNEL);
806         if (!buffer)
807                 return -ENOMEM;
808
809         buflen = PAGE_SIZE;
810         end = buffer+buflen;
811         *--end = '\0';
812         buflen--;
813         path = end-1;
814         *path = '/';
815         while (de && de != de->parent) {
816                 buflen -= de->namelen + 1;
817                 if (buflen < 0)
818                         break;
819                 end -= de->namelen;
820                 memcpy(end, de->name, de->namelen);
821                 *--end = '/';
822                 path = end;
823                 de = de->parent;
824         }
825         rc = security_genfs_sid("proc", path, tclass, sid);
826         free_page((unsigned long)buffer);
827         return rc;
828 }
829 #else
830 static int selinux_proc_get_sid(struct proc_dir_entry *de,
831                                 u16 tclass,
832                                 u32 *sid)
833 {
834         return -EINVAL;
835 }
836 #endif
837
838 /* The inode's security attributes must be initialized before first use. */
839 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
840 {
841         struct superblock_security_struct *sbsec = NULL;
842         struct inode_security_struct *isec = inode->i_security;
843         u32 sid;
844         struct dentry *dentry;
845 #define INITCONTEXTLEN 255
846         char *context = NULL;
847         unsigned len = 0;
848         int rc = 0;
849
850         if (isec->initialized)
851                 goto out;
852
853         mutex_lock(&isec->lock);
854         if (isec->initialized)
855                 goto out_unlock;
856
857         sbsec = inode->i_sb->s_security;
858         if (!sbsec->initialized) {
859                 /* Defer initialization until selinux_complete_init,
860                    after the initial policy is loaded and the security
861                    server is ready to handle calls. */
862                 spin_lock(&sbsec->isec_lock);
863                 if (list_empty(&isec->list))
864                         list_add(&isec->list, &sbsec->isec_head);
865                 spin_unlock(&sbsec->isec_lock);
866                 goto out_unlock;
867         }
868
869         switch (sbsec->behavior) {
870         case SECURITY_FS_USE_XATTR:
871                 if (!inode->i_op->getxattr) {
872                         isec->sid = sbsec->def_sid;
873                         break;
874                 }
875
876                 /* Need a dentry, since the xattr API requires one.
877                    Life would be simpler if we could just pass the inode. */
878                 if (opt_dentry) {
879                         /* Called from d_instantiate or d_splice_alias. */
880                         dentry = dget(opt_dentry);
881                 } else {
882                         /* Called from selinux_complete_init, try to find a dentry. */
883                         dentry = d_find_alias(inode);
884                 }
885                 if (!dentry) {
886                         printk(KERN_WARNING "%s:  no dentry for dev=%s "
887                                "ino=%ld\n", __FUNCTION__, inode->i_sb->s_id,
888                                inode->i_ino);
889                         goto out_unlock;
890                 }
891
892                 len = INITCONTEXTLEN;
893                 context = kmalloc(len, GFP_KERNEL);
894                 if (!context) {
895                         rc = -ENOMEM;
896                         dput(dentry);
897                         goto out_unlock;
898                 }
899                 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
900                                            context, len);
901                 if (rc == -ERANGE) {
902                         /* Need a larger buffer.  Query for the right size. */
903                         rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
904                                                    NULL, 0);
905                         if (rc < 0) {
906                                 dput(dentry);
907                                 goto out_unlock;
908                         }
909                         kfree(context);
910                         len = rc;
911                         context = kmalloc(len, GFP_KERNEL);
912                         if (!context) {
913                                 rc = -ENOMEM;
914                                 dput(dentry);
915                                 goto out_unlock;
916                         }
917                         rc = inode->i_op->getxattr(dentry,
918                                                    XATTR_NAME_SELINUX,
919                                                    context, len);
920                 }
921                 dput(dentry);
922                 if (rc < 0) {
923                         if (rc != -ENODATA) {
924                                 printk(KERN_WARNING "%s:  getxattr returned "
925                                        "%d for dev=%s ino=%ld\n", __FUNCTION__,
926                                        -rc, inode->i_sb->s_id, inode->i_ino);
927                                 kfree(context);
928                                 goto out_unlock;
929                         }
930                         /* Map ENODATA to the default file SID */
931                         sid = sbsec->def_sid;
932                         rc = 0;
933                 } else {
934                         rc = security_context_to_sid_default(context, rc, &sid,
935                                                              sbsec->def_sid);
936                         if (rc) {
937                                 printk(KERN_WARNING "%s:  context_to_sid(%s) "
938                                        "returned %d for dev=%s ino=%ld\n",
939                                        __FUNCTION__, context, -rc,
940                                        inode->i_sb->s_id, inode->i_ino);
941                                 kfree(context);
942                                 /* Leave with the unlabeled SID */
943                                 rc = 0;
944                                 break;
945                         }
946                 }
947                 kfree(context);
948                 isec->sid = sid;
949                 break;
950         case SECURITY_FS_USE_TASK:
951                 isec->sid = isec->task_sid;
952                 break;
953         case SECURITY_FS_USE_TRANS:
954                 /* Default to the fs SID. */
955                 isec->sid = sbsec->sid;
956
957                 /* Try to obtain a transition SID. */
958                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
959                 rc = security_transition_sid(isec->task_sid,
960                                              sbsec->sid,
961                                              isec->sclass,
962                                              &sid);
963                 if (rc)
964                         goto out_unlock;
965                 isec->sid = sid;
966                 break;
967         case SECURITY_FS_USE_MNTPOINT:
968                 isec->sid = sbsec->mntpoint_sid;
969                 break;
970         default:
971                 /* Default to the fs superblock SID. */
972                 isec->sid = sbsec->sid;
973
974                 if (sbsec->proc) {
975                         struct proc_inode *proci = PROC_I(inode);
976                         if (proci->pde) {
977                                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
978                                 rc = selinux_proc_get_sid(proci->pde,
979                                                           isec->sclass,
980                                                           &sid);
981                                 if (rc)
982                                         goto out_unlock;
983                                 isec->sid = sid;
984                         }
985                 }
986                 break;
987         }
988
989         isec->initialized = 1;
990
991 out_unlock:
992         mutex_unlock(&isec->lock);
993 out:
994         if (isec->sclass == SECCLASS_FILE)
995                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
996         return rc;
997 }
998
999 /* Convert a Linux signal to an access vector. */
1000 static inline u32 signal_to_av(int sig)
1001 {
1002         u32 perm = 0;
1003
1004         switch (sig) {
1005         case SIGCHLD:
1006                 /* Commonly granted from child to parent. */
1007                 perm = PROCESS__SIGCHLD;
1008                 break;
1009         case SIGKILL:
1010                 /* Cannot be caught or ignored */
1011                 perm = PROCESS__SIGKILL;
1012                 break;
1013         case SIGSTOP:
1014                 /* Cannot be caught or ignored */
1015                 perm = PROCESS__SIGSTOP;
1016                 break;
1017         default:
1018                 /* All other signals. */
1019                 perm = PROCESS__SIGNAL;
1020                 break;
1021         }
1022
1023         return perm;
1024 }
1025
1026 /* Check permission betweeen a pair of tasks, e.g. signal checks,
1027    fork check, ptrace check, etc. */
1028 static int task_has_perm(struct task_struct *tsk1,
1029                          struct task_struct *tsk2,
1030                          u32 perms)
1031 {
1032         struct task_security_struct *tsec1, *tsec2;
1033
1034         tsec1 = tsk1->security;
1035         tsec2 = tsk2->security;
1036         return avc_has_perm(tsec1->sid, tsec2->sid,
1037                             SECCLASS_PROCESS, perms, NULL);
1038 }
1039
1040 /* Check whether a task is allowed to use a capability. */
1041 static int task_has_capability(struct task_struct *tsk,
1042                                int cap)
1043 {
1044         struct task_security_struct *tsec;
1045         struct avc_audit_data ad;
1046
1047         tsec = tsk->security;
1048
1049         AVC_AUDIT_DATA_INIT(&ad,CAP);
1050         ad.tsk = tsk;
1051         ad.u.cap = cap;
1052
1053         return avc_has_perm(tsec->sid, tsec->sid,
1054                             SECCLASS_CAPABILITY, CAP_TO_MASK(cap), &ad);
1055 }
1056
1057 /* Check whether a task is allowed to use a system operation. */
1058 static int task_has_system(struct task_struct *tsk,
1059                            u32 perms)
1060 {
1061         struct task_security_struct *tsec;
1062
1063         tsec = tsk->security;
1064
1065         return avc_has_perm(tsec->sid, SECINITSID_KERNEL,
1066                             SECCLASS_SYSTEM, perms, NULL);
1067 }
1068
1069 /* Check whether a task has a particular permission to an inode.
1070    The 'adp' parameter is optional and allows other audit
1071    data to be passed (e.g. the dentry). */
1072 static int inode_has_perm(struct task_struct *tsk,
1073                           struct inode *inode,
1074                           u32 perms,
1075                           struct avc_audit_data *adp)
1076 {
1077         struct task_security_struct *tsec;
1078         struct inode_security_struct *isec;
1079         struct avc_audit_data ad;
1080
1081         tsec = tsk->security;
1082         isec = inode->i_security;
1083
1084         if (!adp) {
1085                 adp = &ad;
1086                 AVC_AUDIT_DATA_INIT(&ad, FS);
1087                 ad.u.fs.inode = inode;
1088         }
1089
1090         return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, adp);
1091 }
1092
1093 /* Same as inode_has_perm, but pass explicit audit data containing
1094    the dentry to help the auditing code to more easily generate the
1095    pathname if needed. */
1096 static inline int dentry_has_perm(struct task_struct *tsk,
1097                                   struct vfsmount *mnt,
1098                                   struct dentry *dentry,
1099                                   u32 av)
1100 {
1101         struct inode *inode = dentry->d_inode;
1102         struct avc_audit_data ad;
1103         AVC_AUDIT_DATA_INIT(&ad,FS);
1104         ad.u.fs.mnt = mnt;
1105         ad.u.fs.dentry = dentry;
1106         return inode_has_perm(tsk, inode, av, &ad);
1107 }
1108
1109 /* Check whether a task can use an open file descriptor to
1110    access an inode in a given way.  Check access to the
1111    descriptor itself, and then use dentry_has_perm to
1112    check a particular permission to the file.
1113    Access to the descriptor is implicitly granted if it
1114    has the same SID as the process.  If av is zero, then
1115    access to the file is not checked, e.g. for cases
1116    where only the descriptor is affected like seek. */
1117 static int file_has_perm(struct task_struct *tsk,
1118                                 struct file *file,
1119                                 u32 av)
1120 {
1121         struct task_security_struct *tsec = tsk->security;
1122         struct file_security_struct *fsec = file->f_security;
1123         struct vfsmount *mnt = file->f_path.mnt;
1124         struct dentry *dentry = file->f_path.dentry;
1125         struct inode *inode = dentry->d_inode;
1126         struct avc_audit_data ad;
1127         int rc;
1128
1129         AVC_AUDIT_DATA_INIT(&ad, FS);
1130         ad.u.fs.mnt = mnt;
1131         ad.u.fs.dentry = dentry;
1132
1133         if (tsec->sid != fsec->sid) {
1134                 rc = avc_has_perm(tsec->sid, fsec->sid,
1135                                   SECCLASS_FD,
1136                                   FD__USE,
1137                                   &ad);
1138                 if (rc)
1139                         return rc;
1140         }
1141
1142         /* av is zero if only checking access to the descriptor. */
1143         if (av)
1144                 return inode_has_perm(tsk, inode, av, &ad);
1145
1146         return 0;
1147 }
1148
1149 /* Check whether a task can create a file. */
1150 static int may_create(struct inode *dir,
1151                       struct dentry *dentry,
1152                       u16 tclass)
1153 {
1154         struct task_security_struct *tsec;
1155         struct inode_security_struct *dsec;
1156         struct superblock_security_struct *sbsec;
1157         u32 newsid;
1158         struct avc_audit_data ad;
1159         int rc;
1160
1161         tsec = current->security;
1162         dsec = dir->i_security;
1163         sbsec = dir->i_sb->s_security;
1164
1165         AVC_AUDIT_DATA_INIT(&ad, FS);
1166         ad.u.fs.dentry = dentry;
1167
1168         rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR,
1169                           DIR__ADD_NAME | DIR__SEARCH,
1170                           &ad);
1171         if (rc)
1172                 return rc;
1173
1174         if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
1175                 newsid = tsec->create_sid;
1176         } else {
1177                 rc = security_transition_sid(tsec->sid, dsec->sid, tclass,
1178                                              &newsid);
1179                 if (rc)
1180                         return rc;
1181         }
1182
1183         rc = avc_has_perm(tsec->sid, newsid, tclass, FILE__CREATE, &ad);
1184         if (rc)
1185                 return rc;
1186
1187         return avc_has_perm(newsid, sbsec->sid,
1188                             SECCLASS_FILESYSTEM,
1189                             FILESYSTEM__ASSOCIATE, &ad);
1190 }
1191
1192 /* Check whether a task can create a key. */
1193 static int may_create_key(u32 ksid,
1194                           struct task_struct *ctx)
1195 {
1196         struct task_security_struct *tsec;
1197
1198         tsec = ctx->security;
1199
1200         return avc_has_perm(tsec->sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1201 }
1202
1203 #define MAY_LINK   0
1204 #define MAY_UNLINK 1
1205 #define MAY_RMDIR  2
1206
1207 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1208 static int may_link(struct inode *dir,
1209                     struct dentry *dentry,
1210                     int kind)
1211
1212 {
1213         struct task_security_struct *tsec;
1214         struct inode_security_struct *dsec, *isec;
1215         struct avc_audit_data ad;
1216         u32 av;
1217         int rc;
1218
1219         tsec = current->security;
1220         dsec = dir->i_security;
1221         isec = dentry->d_inode->i_security;
1222
1223         AVC_AUDIT_DATA_INIT(&ad, FS);
1224         ad.u.fs.dentry = dentry;
1225
1226         av = DIR__SEARCH;
1227         av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1228         rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR, av, &ad);
1229         if (rc)
1230                 return rc;
1231
1232         switch (kind) {
1233         case MAY_LINK:
1234                 av = FILE__LINK;
1235                 break;
1236         case MAY_UNLINK:
1237                 av = FILE__UNLINK;
1238                 break;
1239         case MAY_RMDIR:
1240                 av = DIR__RMDIR;
1241                 break;
1242         default:
1243                 printk(KERN_WARNING "may_link:  unrecognized kind %d\n", kind);
1244                 return 0;
1245         }
1246
1247         rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass, av, &ad);
1248         return rc;
1249 }
1250
1251 static inline int may_rename(struct inode *old_dir,
1252                              struct dentry *old_dentry,
1253                              struct inode *new_dir,
1254                              struct dentry *new_dentry)
1255 {
1256         struct task_security_struct *tsec;
1257         struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1258         struct avc_audit_data ad;
1259         u32 av;
1260         int old_is_dir, new_is_dir;
1261         int rc;
1262
1263         tsec = current->security;
1264         old_dsec = old_dir->i_security;
1265         old_isec = old_dentry->d_inode->i_security;
1266         old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1267         new_dsec = new_dir->i_security;
1268
1269         AVC_AUDIT_DATA_INIT(&ad, FS);
1270
1271         ad.u.fs.dentry = old_dentry;
1272         rc = avc_has_perm(tsec->sid, old_dsec->sid, SECCLASS_DIR,
1273                           DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1274         if (rc)
1275                 return rc;
1276         rc = avc_has_perm(tsec->sid, old_isec->sid,
1277                           old_isec->sclass, FILE__RENAME, &ad);
1278         if (rc)
1279                 return rc;
1280         if (old_is_dir && new_dir != old_dir) {
1281                 rc = avc_has_perm(tsec->sid, old_isec->sid,
1282                                   old_isec->sclass, DIR__REPARENT, &ad);
1283                 if (rc)
1284                         return rc;
1285         }
1286
1287         ad.u.fs.dentry = new_dentry;
1288         av = DIR__ADD_NAME | DIR__SEARCH;
1289         if (new_dentry->d_inode)
1290                 av |= DIR__REMOVE_NAME;
1291         rc = avc_has_perm(tsec->sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1292         if (rc)
1293                 return rc;
1294         if (new_dentry->d_inode) {
1295                 new_isec = new_dentry->d_inode->i_security;
1296                 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1297                 rc = avc_has_perm(tsec->sid, new_isec->sid,
1298                                   new_isec->sclass,
1299                                   (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1300                 if (rc)
1301                         return rc;
1302         }
1303
1304         return 0;
1305 }
1306
1307 /* Check whether a task can perform a filesystem operation. */
1308 static int superblock_has_perm(struct task_struct *tsk,
1309                                struct super_block *sb,
1310                                u32 perms,
1311                                struct avc_audit_data *ad)
1312 {
1313         struct task_security_struct *tsec;
1314         struct superblock_security_struct *sbsec;
1315
1316         tsec = tsk->security;
1317         sbsec = sb->s_security;
1318         return avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
1319                             perms, ad);
1320 }
1321
1322 /* Convert a Linux mode and permission mask to an access vector. */
1323 static inline u32 file_mask_to_av(int mode, int mask)
1324 {
1325         u32 av = 0;
1326
1327         if ((mode & S_IFMT) != S_IFDIR) {
1328                 if (mask & MAY_EXEC)
1329                         av |= FILE__EXECUTE;
1330                 if (mask & MAY_READ)
1331                         av |= FILE__READ;
1332
1333                 if (mask & MAY_APPEND)
1334                         av |= FILE__APPEND;
1335                 else if (mask & MAY_WRITE)
1336                         av |= FILE__WRITE;
1337
1338         } else {
1339                 if (mask & MAY_EXEC)
1340                         av |= DIR__SEARCH;
1341                 if (mask & MAY_WRITE)
1342                         av |= DIR__WRITE;
1343                 if (mask & MAY_READ)
1344                         av |= DIR__READ;
1345         }
1346
1347         return av;
1348 }
1349
1350 /* Convert a Linux file to an access vector. */
1351 static inline u32 file_to_av(struct file *file)
1352 {
1353         u32 av = 0;
1354
1355         if (file->f_mode & FMODE_READ)
1356                 av |= FILE__READ;
1357         if (file->f_mode & FMODE_WRITE) {
1358                 if (file->f_flags & O_APPEND)
1359                         av |= FILE__APPEND;
1360                 else
1361                         av |= FILE__WRITE;
1362         }
1363
1364         return av;
1365 }
1366
1367 /* Hook functions begin here. */
1368
1369 static int selinux_ptrace(struct task_struct *parent, struct task_struct *child)
1370 {
1371         int rc;
1372
1373         rc = secondary_ops->ptrace(parent,child);
1374         if (rc)
1375                 return rc;
1376
1377         return task_has_perm(parent, child, PROCESS__PTRACE);
1378 }
1379
1380 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1381                           kernel_cap_t *inheritable, kernel_cap_t *permitted)
1382 {
1383         int error;
1384
1385         error = task_has_perm(current, target, PROCESS__GETCAP);
1386         if (error)
1387                 return error;
1388
1389         return secondary_ops->capget(target, effective, inheritable, permitted);
1390 }
1391
1392 static int selinux_capset_check(struct task_struct *target, kernel_cap_t *effective,
1393                                 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1394 {
1395         int error;
1396
1397         error = secondary_ops->capset_check(target, effective, inheritable, permitted);
1398         if (error)
1399                 return error;
1400
1401         return task_has_perm(current, target, PROCESS__SETCAP);
1402 }
1403
1404 static void selinux_capset_set(struct task_struct *target, kernel_cap_t *effective,
1405                                kernel_cap_t *inheritable, kernel_cap_t *permitted)
1406 {
1407         secondary_ops->capset_set(target, effective, inheritable, permitted);
1408 }
1409
1410 static int selinux_capable(struct task_struct *tsk, int cap)
1411 {
1412         int rc;
1413
1414         rc = secondary_ops->capable(tsk, cap);
1415         if (rc)
1416                 return rc;
1417
1418         return task_has_capability(tsk,cap);
1419 }
1420
1421 static int selinux_sysctl(ctl_table *table, int op)
1422 {
1423         int error = 0;
1424         u32 av;
1425         struct task_security_struct *tsec;
1426         u32 tsid;
1427         int rc;
1428
1429         rc = secondary_ops->sysctl(table, op);
1430         if (rc)
1431                 return rc;
1432
1433         tsec = current->security;
1434
1435         rc = selinux_proc_get_sid(table->de, (op == 001) ?
1436                                   SECCLASS_DIR : SECCLASS_FILE, &tsid);
1437         if (rc) {
1438                 /* Default to the well-defined sysctl SID. */
1439                 tsid = SECINITSID_SYSCTL;
1440         }
1441
1442         /* The op values are "defined" in sysctl.c, thereby creating
1443          * a bad coupling between this module and sysctl.c */
1444         if(op == 001) {
1445                 error = avc_has_perm(tsec->sid, tsid,
1446                                      SECCLASS_DIR, DIR__SEARCH, NULL);
1447         } else {
1448                 av = 0;
1449                 if (op & 004)
1450                         av |= FILE__READ;
1451                 if (op & 002)
1452                         av |= FILE__WRITE;
1453                 if (av)
1454                         error = avc_has_perm(tsec->sid, tsid,
1455                                              SECCLASS_FILE, av, NULL);
1456         }
1457
1458         return error;
1459 }
1460
1461 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1462 {
1463         int rc = 0;
1464
1465         if (!sb)
1466                 return 0;
1467
1468         switch (cmds) {
1469                 case Q_SYNC:
1470                 case Q_QUOTAON:
1471                 case Q_QUOTAOFF:
1472                 case Q_SETINFO:
1473                 case Q_SETQUOTA:
1474                         rc = superblock_has_perm(current,
1475                                                  sb,
1476                                                  FILESYSTEM__QUOTAMOD, NULL);
1477                         break;
1478                 case Q_GETFMT:
1479                 case Q_GETINFO:
1480                 case Q_GETQUOTA:
1481                         rc = superblock_has_perm(current,
1482                                                  sb,
1483                                                  FILESYSTEM__QUOTAGET, NULL);
1484                         break;
1485                 default:
1486                         rc = 0;  /* let the kernel handle invalid cmds */
1487                         break;
1488         }
1489         return rc;
1490 }
1491
1492 static int selinux_quota_on(struct dentry *dentry)
1493 {
1494         return dentry_has_perm(current, NULL, dentry, FILE__QUOTAON);
1495 }
1496
1497 static int selinux_syslog(int type)
1498 {
1499         int rc;
1500
1501         rc = secondary_ops->syslog(type);
1502         if (rc)
1503                 return rc;
1504
1505         switch (type) {
1506                 case 3:         /* Read last kernel messages */
1507                 case 10:        /* Return size of the log buffer */
1508                         rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1509                         break;
1510                 case 6:         /* Disable logging to console */
1511                 case 7:         /* Enable logging to console */
1512                 case 8:         /* Set level of messages printed to console */
1513                         rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1514                         break;
1515                 case 0:         /* Close log */
1516                 case 1:         /* Open log */
1517                 case 2:         /* Read from log */
1518                 case 4:         /* Read/clear last kernel messages */
1519                 case 5:         /* Clear ring buffer */
1520                 default:
1521                         rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1522                         break;
1523         }
1524         return rc;
1525 }
1526
1527 /*
1528  * Check that a process has enough memory to allocate a new virtual
1529  * mapping. 0 means there is enough memory for the allocation to
1530  * succeed and -ENOMEM implies there is not.
1531  *
1532  * Note that secondary_ops->capable and task_has_perm_noaudit return 0
1533  * if the capability is granted, but __vm_enough_memory requires 1 if
1534  * the capability is granted.
1535  *
1536  * Do not audit the selinux permission check, as this is applied to all
1537  * processes that allocate mappings.
1538  */
1539 static int selinux_vm_enough_memory(long pages)
1540 {
1541         int rc, cap_sys_admin = 0;
1542         struct task_security_struct *tsec = current->security;
1543
1544         rc = secondary_ops->capable(current, CAP_SYS_ADMIN);
1545         if (rc == 0)
1546                 rc = avc_has_perm_noaudit(tsec->sid, tsec->sid,
1547                                         SECCLASS_CAPABILITY,
1548                                         CAP_TO_MASK(CAP_SYS_ADMIN),
1549                                         NULL);
1550
1551         if (rc == 0)
1552                 cap_sys_admin = 1;
1553
1554         return __vm_enough_memory(pages, cap_sys_admin);
1555 }
1556
1557 /* binprm security operations */
1558
1559 static int selinux_bprm_alloc_security(struct linux_binprm *bprm)
1560 {
1561         struct bprm_security_struct *bsec;
1562
1563         bsec = kzalloc(sizeof(struct bprm_security_struct), GFP_KERNEL);
1564         if (!bsec)
1565                 return -ENOMEM;
1566
1567         bsec->bprm = bprm;
1568         bsec->sid = SECINITSID_UNLABELED;
1569         bsec->set = 0;
1570
1571         bprm->security = bsec;
1572         return 0;
1573 }
1574
1575 static int selinux_bprm_set_security(struct linux_binprm *bprm)
1576 {
1577         struct task_security_struct *tsec;
1578         struct inode *inode = bprm->file->f_path.dentry->d_inode;
1579         struct inode_security_struct *isec;
1580         struct bprm_security_struct *bsec;
1581         u32 newsid;
1582         struct avc_audit_data ad;
1583         int rc;
1584
1585         rc = secondary_ops->bprm_set_security(bprm);
1586         if (rc)
1587                 return rc;
1588
1589         bsec = bprm->security;
1590
1591         if (bsec->set)
1592                 return 0;
1593
1594         tsec = current->security;
1595         isec = inode->i_security;
1596
1597         /* Default to the current task SID. */
1598         bsec->sid = tsec->sid;
1599
1600         /* Reset fs, key, and sock SIDs on execve. */
1601         tsec->create_sid = 0;
1602         tsec->keycreate_sid = 0;
1603         tsec->sockcreate_sid = 0;
1604
1605         if (tsec->exec_sid) {
1606                 newsid = tsec->exec_sid;
1607                 /* Reset exec SID on execve. */
1608                 tsec->exec_sid = 0;
1609         } else {
1610                 /* Check for a default transition on this program. */
1611                 rc = security_transition_sid(tsec->sid, isec->sid,
1612                                              SECCLASS_PROCESS, &newsid);
1613                 if (rc)
1614                         return rc;
1615         }
1616
1617         AVC_AUDIT_DATA_INIT(&ad, FS);
1618         ad.u.fs.mnt = bprm->file->f_path.mnt;
1619         ad.u.fs.dentry = bprm->file->f_path.dentry;
1620
1621         if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
1622                 newsid = tsec->sid;
1623
1624         if (tsec->sid == newsid) {
1625                 rc = avc_has_perm(tsec->sid, isec->sid,
1626                                   SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
1627                 if (rc)
1628                         return rc;
1629         } else {
1630                 /* Check permissions for the transition. */
1631                 rc = avc_has_perm(tsec->sid, newsid,
1632                                   SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
1633                 if (rc)
1634                         return rc;
1635
1636                 rc = avc_has_perm(newsid, isec->sid,
1637                                   SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
1638                 if (rc)
1639                         return rc;
1640
1641                 /* Clear any possibly unsafe personality bits on exec: */
1642                 current->personality &= ~PER_CLEAR_ON_SETID;
1643
1644                 /* Set the security field to the new SID. */
1645                 bsec->sid = newsid;
1646         }
1647
1648         bsec->set = 1;
1649         return 0;
1650 }
1651
1652 static int selinux_bprm_check_security (struct linux_binprm *bprm)
1653 {
1654         return secondary_ops->bprm_check_security(bprm);
1655 }
1656
1657
1658 static int selinux_bprm_secureexec (struct linux_binprm *bprm)
1659 {
1660         struct task_security_struct *tsec = current->security;
1661         int atsecure = 0;
1662
1663         if (tsec->osid != tsec->sid) {
1664                 /* Enable secure mode for SIDs transitions unless
1665                    the noatsecure permission is granted between
1666                    the two SIDs, i.e. ahp returns 0. */
1667                 atsecure = avc_has_perm(tsec->osid, tsec->sid,
1668                                          SECCLASS_PROCESS,
1669                                          PROCESS__NOATSECURE, NULL);
1670         }
1671
1672         return (atsecure || secondary_ops->bprm_secureexec(bprm));
1673 }
1674
1675 static void selinux_bprm_free_security(struct linux_binprm *bprm)
1676 {
1677         kfree(bprm->security);
1678         bprm->security = NULL;
1679 }
1680
1681 extern struct vfsmount *selinuxfs_mount;
1682 extern struct dentry *selinux_null;
1683
1684 /* Derived from fs/exec.c:flush_old_files. */
1685 static inline void flush_unauthorized_files(struct files_struct * files)
1686 {
1687         struct avc_audit_data ad;
1688         struct file *file, *devnull = NULL;
1689         struct tty_struct *tty;
1690         struct fdtable *fdt;
1691         long j = -1;
1692         int drop_tty = 0;
1693
1694         mutex_lock(&tty_mutex);
1695         tty = get_current_tty();
1696         if (tty) {
1697                 file_list_lock();
1698                 file = list_entry(tty->tty_files.next, typeof(*file), f_u.fu_list);
1699                 if (file) {
1700                         /* Revalidate access to controlling tty.
1701                            Use inode_has_perm on the tty inode directly rather
1702                            than using file_has_perm, as this particular open
1703                            file may belong to another process and we are only
1704                            interested in the inode-based check here. */
1705                         struct inode *inode = file->f_path.dentry->d_inode;
1706                         if (inode_has_perm(current, inode,
1707                                            FILE__READ | FILE__WRITE, NULL)) {
1708                                 drop_tty = 1;
1709                         }
1710                 }
1711                 file_list_unlock();
1712
1713                 /* Reset controlling tty. */
1714                 if (drop_tty)
1715                         proc_set_tty(current, NULL);
1716         }
1717         mutex_unlock(&tty_mutex);
1718
1719         /* Revalidate access to inherited open files. */
1720
1721         AVC_AUDIT_DATA_INIT(&ad,FS);
1722
1723         spin_lock(&files->file_lock);
1724         for (;;) {
1725                 unsigned long set, i;
1726                 int fd;
1727
1728                 j++;
1729                 i = j * __NFDBITS;
1730                 fdt = files_fdtable(files);
1731                 if (i >= fdt->max_fds)
1732                         break;
1733                 set = fdt->open_fds->fds_bits[j];
1734                 if (!set)
1735                         continue;
1736                 spin_unlock(&files->file_lock);
1737                 for ( ; set ; i++,set >>= 1) {
1738                         if (set & 1) {
1739                                 file = fget(i);
1740                                 if (!file)
1741                                         continue;
1742                                 if (file_has_perm(current,
1743                                                   file,
1744                                                   file_to_av(file))) {
1745                                         sys_close(i);
1746                                         fd = get_unused_fd();
1747                                         if (fd != i) {
1748                                                 if (fd >= 0)
1749                                                         put_unused_fd(fd);
1750                                                 fput(file);
1751                                                 continue;
1752                                         }
1753                                         if (devnull) {
1754                                                 get_file(devnull);
1755                                         } else {
1756                                                 devnull = dentry_open(dget(selinux_null), mntget(selinuxfs_mount), O_RDWR);
1757                                                 if (IS_ERR(devnull)) {
1758                                                         devnull = NULL;
1759                                                         put_unused_fd(fd);
1760                                                         fput(file);
1761                                                         continue;
1762                                                 }
1763                                         }
1764                                         fd_install(fd, devnull);
1765                                 }
1766                                 fput(file);
1767                         }
1768                 }
1769                 spin_lock(&files->file_lock);
1770
1771         }
1772         spin_unlock(&files->file_lock);
1773 }
1774
1775 static void selinux_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
1776 {
1777         struct task_security_struct *tsec;
1778         struct bprm_security_struct *bsec;
1779         u32 sid;
1780         int rc;
1781
1782         secondary_ops->bprm_apply_creds(bprm, unsafe);
1783
1784         tsec = current->security;
1785
1786         bsec = bprm->security;
1787         sid = bsec->sid;
1788
1789         tsec->osid = tsec->sid;
1790         bsec->unsafe = 0;
1791         if (tsec->sid != sid) {
1792                 /* Check for shared state.  If not ok, leave SID
1793                    unchanged and kill. */
1794                 if (unsafe & LSM_UNSAFE_SHARE) {
1795                         rc = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
1796                                         PROCESS__SHARE, NULL);
1797                         if (rc) {
1798                                 bsec->unsafe = 1;
1799                                 return;
1800                         }
1801                 }
1802
1803                 /* Check for ptracing, and update the task SID if ok.
1804                    Otherwise, leave SID unchanged and kill. */
1805                 if (unsafe & (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
1806                         struct task_struct *t;
1807
1808                         rcu_read_lock();
1809                         t = tracehook_tracer_task(current);
1810                         if (unlikely(t == NULL))
1811                                 rcu_read_unlock();
1812                         else {
1813                                 struct task_security_struct *sec = t->security;
1814                                 u32 ptsid = sec->sid;
1815                                 rcu_read_unlock();
1816
1817                                 rc = avc_has_perm(ptsid, sid,
1818                                                   SECCLASS_PROCESS,
1819                                                   PROCESS__PTRACE, NULL);
1820                                 if (rc) {
1821                                         bsec->unsafe = 1;
1822                                         return;
1823                                 }
1824                         }
1825                 }
1826                 tsec->sid = sid;
1827         }
1828 }
1829
1830 /*
1831  * called after apply_creds without the task lock held
1832  */
1833 static void selinux_bprm_post_apply_creds(struct linux_binprm *bprm)
1834 {
1835         struct task_security_struct *tsec;
1836         struct rlimit *rlim, *initrlim;
1837         struct itimerval itimer;
1838         struct bprm_security_struct *bsec;
1839         int rc, i;
1840
1841         tsec = current->security;
1842         bsec = bprm->security;
1843
1844         if (bsec->unsafe) {
1845                 force_sig_specific(SIGKILL, current);
1846                 return;
1847         }
1848         if (tsec->osid == tsec->sid)
1849                 return;
1850
1851         /* Close files for which the new task SID is not authorized. */
1852         flush_unauthorized_files(current->files);
1853
1854         /* Check whether the new SID can inherit signal state
1855            from the old SID.  If not, clear itimers to avoid
1856            subsequent signal generation and flush and unblock
1857            signals. This must occur _after_ the task SID has
1858           been updated so that any kill done after the flush
1859           will be checked against the new SID. */
1860         rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
1861                           PROCESS__SIGINH, NULL);
1862         if (rc) {
1863                 memset(&itimer, 0, sizeof itimer);
1864                 for (i = 0; i < 3; i++)
1865                         do_setitimer(i, &itimer, NULL);
1866                 flush_signals(current);
1867                 spin_lock_irq(&current->sighand->siglock);
1868                 flush_signal_handlers(current, 1);
1869                 sigemptyset(&current->blocked);
1870                 recalc_sigpending();
1871                 spin_unlock_irq(&current->sighand->siglock);
1872         }
1873
1874         /* Check whether the new SID can inherit resource limits
1875            from the old SID.  If not, reset all soft limits to
1876            the lower of the current task's hard limit and the init
1877            task's soft limit.  Note that the setting of hard limits
1878            (even to lower them) can be controlled by the setrlimit
1879            check. The inclusion of the init task's soft limit into
1880            the computation is to avoid resetting soft limits higher
1881            than the default soft limit for cases where the default
1882            is lower than the hard limit, e.g. RLIMIT_CORE or
1883            RLIMIT_STACK.*/
1884         rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
1885                           PROCESS__RLIMITINH, NULL);
1886         if (rc) {
1887                 for (i = 0; i < RLIM_NLIMITS; i++) {
1888                         rlim = current->signal->rlim + i;
1889                         initrlim = init_task.signal->rlim+i;
1890                         rlim->rlim_cur = min(rlim->rlim_max,initrlim->rlim_cur);
1891                 }
1892                 if (current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
1893                         /*
1894                          * This will cause RLIMIT_CPU calculations
1895                          * to be refigured.
1896                          */
1897                         current->it_prof_expires = jiffies_to_cputime(1);
1898                 }
1899         }
1900
1901         /* Wake up the parent if it is waiting so that it can
1902            recheck wait permission to the new task SID. */
1903         wake_up_interruptible(&current->parent->signal->wait_chldexit);
1904 }
1905
1906 /* superblock security operations */
1907
1908 static int selinux_sb_alloc_security(struct super_block *sb)
1909 {
1910         return superblock_alloc_security(sb);
1911 }
1912
1913 static void selinux_sb_free_security(struct super_block *sb)
1914 {
1915         superblock_free_security(sb);
1916 }
1917
1918 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
1919 {
1920         if (plen > olen)
1921                 return 0;
1922
1923         return !memcmp(prefix, option, plen);
1924 }
1925
1926 static inline int selinux_option(char *option, int len)
1927 {
1928         return (match_prefix("context=", sizeof("context=")-1, option, len) ||
1929                 match_prefix("fscontext=", sizeof("fscontext=")-1, option, len) ||
1930                 match_prefix("defcontext=", sizeof("defcontext=")-1, option, len) ||
1931                 match_prefix("rootcontext=", sizeof("rootcontext=")-1, option, len));
1932 }
1933
1934 static inline void take_option(char **to, char *from, int *first, int len)
1935 {
1936         if (!*first) {
1937                 **to = ',';
1938                 *to += 1;
1939         } else
1940                 *first = 0;
1941         memcpy(*to, from, len);
1942         *to += len;
1943 }
1944
1945 static inline void take_selinux_option(char **to, char *from, int *first, 
1946                                        int len)
1947 {
1948         int current_size = 0;
1949
1950         if (!*first) {
1951                 **to = '|';
1952                 *to += 1;
1953         }
1954         else
1955                 *first = 0;
1956
1957         while (current_size < len) {
1958                 if (*from != '"') {
1959                         **to = *from;
1960                         *to += 1;
1961                 }
1962                 from += 1;
1963                 current_size += 1;
1964         }
1965 }
1966
1967 static int selinux_sb_copy_data(struct file_system_type *type, void *orig, void *copy)
1968 {
1969         int fnosec, fsec, rc = 0;
1970         char *in_save, *in_curr, *in_end;
1971         char *sec_curr, *nosec_save, *nosec;
1972         int open_quote = 0;
1973
1974         in_curr = orig;
1975         sec_curr = copy;
1976
1977         /* Binary mount data: just copy */
1978         if (type->fs_flags & FS_BINARY_MOUNTDATA) {
1979                 copy_page(sec_curr, in_curr);
1980                 goto out;
1981         }
1982
1983         nosec = (char *)get_zeroed_page(GFP_KERNEL);
1984         if (!nosec) {
1985                 rc = -ENOMEM;
1986                 goto out;
1987         }
1988
1989         nosec_save = nosec;
1990         fnosec = fsec = 1;
1991         in_save = in_end = orig;
1992
1993         do {
1994                 if (*in_end == '"')
1995                         open_quote = !open_quote;
1996                 if ((*in_end == ',' && open_quote == 0) ||
1997                                 *in_end == '\0') {
1998                         int len = in_end - in_curr;
1999
2000                         if (selinux_option(in_curr, len))
2001                                 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2002                         else
2003                                 take_option(&nosec, in_curr, &fnosec, len);
2004
2005                         in_curr = in_end + 1;
2006                 }
2007         } while (*in_end++);
2008
2009         strcpy(in_save, nosec_save);
2010         free_page((unsigned long)nosec_save);
2011 out:
2012         return rc;
2013 }
2014
2015 static int selinux_sb_kern_mount(struct super_block *sb, void *data)
2016 {
2017         struct avc_audit_data ad;
2018         int rc;
2019
2020         rc = superblock_doinit(sb, data);
2021         if (rc)
2022                 return rc;
2023
2024         AVC_AUDIT_DATA_INIT(&ad,FS);
2025         ad.u.fs.dentry = sb->s_root;
2026         return superblock_has_perm(current, sb, FILESYSTEM__MOUNT, &ad);
2027 }
2028
2029 static int selinux_sb_statfs(struct dentry *dentry)
2030 {
2031         struct avc_audit_data ad;
2032
2033         AVC_AUDIT_DATA_INIT(&ad,FS);
2034         ad.u.fs.dentry = dentry->d_sb->s_root;
2035         return superblock_has_perm(current, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2036 }
2037
2038 static int selinux_mount(char * dev_name,
2039                          struct nameidata *nd,
2040                          char * type,
2041                          unsigned long flags,
2042                          void * data)
2043 {
2044         int rc;
2045
2046         rc = secondary_ops->sb_mount(dev_name, nd, type, flags, data);
2047         if (rc)
2048                 return rc;
2049
2050         if (flags & MS_REMOUNT)
2051                 return superblock_has_perm(current, nd->mnt->mnt_sb,
2052                                            FILESYSTEM__REMOUNT, NULL);
2053         else
2054                 return dentry_has_perm(current, nd->mnt, nd->dentry,
2055                                        FILE__MOUNTON);
2056 }
2057
2058 static int selinux_umount(struct vfsmount *mnt, int flags)
2059 {
2060         int rc;
2061
2062         rc = secondary_ops->sb_umount(mnt, flags);
2063         if (rc)
2064                 return rc;
2065
2066         return superblock_has_perm(current,mnt->mnt_sb,
2067                                    FILESYSTEM__UNMOUNT,NULL);
2068 }
2069
2070 /* inode security operations */
2071
2072 static int selinux_inode_alloc_security(struct inode *inode)
2073 {
2074         return inode_alloc_security(inode);
2075 }
2076
2077 static void selinux_inode_free_security(struct inode *inode)
2078 {
2079         inode_free_security(inode);
2080 }
2081
2082 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2083                                        char **name, void **value,
2084                                        size_t *len)
2085 {
2086         struct task_security_struct *tsec;
2087         struct inode_security_struct *dsec;
2088         struct superblock_security_struct *sbsec;
2089         u32 newsid, clen;
2090         int rc;
2091         char *namep = NULL, *context;
2092
2093         tsec = current->security;
2094         dsec = dir->i_security;
2095         sbsec = dir->i_sb->s_security;
2096
2097         if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
2098                 newsid = tsec->create_sid;
2099         } else {
2100                 rc = security_transition_sid(tsec->sid, dsec->sid,
2101                                              inode_mode_to_security_class(inode->i_mode),
2102                                              &newsid);
2103                 if (rc) {
2104                         printk(KERN_WARNING "%s:  "
2105                                "security_transition_sid failed, rc=%d (dev=%s "
2106                                "ino=%ld)\n",
2107                                __FUNCTION__,
2108                                -rc, inode->i_sb->s_id, inode->i_ino);
2109                         return rc;
2110                 }
2111         }
2112
2113         /* Possibly defer initialization to selinux_complete_init. */
2114         if (sbsec->initialized) {
2115                 struct inode_security_struct *isec = inode->i_security;
2116                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2117                 isec->sid = newsid;
2118                 isec->initialized = 1;
2119         }
2120
2121         if (!ss_initialized || sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2122                 return -EOPNOTSUPP;
2123
2124         if (name) {
2125                 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_KERNEL);
2126                 if (!namep)
2127                         return -ENOMEM;
2128                 *name = namep;
2129         }
2130
2131         if (value && len) {
2132                 rc = security_sid_to_context(newsid, &context, &clen);
2133                 if (rc) {
2134                         kfree(namep);
2135                         return rc;
2136                 }
2137                 *value = context;
2138                 *len = clen;
2139         }
2140
2141         return 0;
2142 }
2143
2144 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2145 {
2146         return may_create(dir, dentry, SECCLASS_FILE);
2147 }
2148
2149 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2150 {
2151         int rc;
2152
2153         rc = secondary_ops->inode_link(old_dentry,dir,new_dentry);
2154         if (rc)
2155                 return rc;
2156         return may_link(dir, old_dentry, MAY_LINK);
2157 }
2158
2159 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2160 {
2161         int rc;
2162
2163         rc = secondary_ops->inode_unlink(dir, dentry);
2164         if (rc)
2165                 return rc;
2166         return may_link(dir, dentry, MAY_UNLINK);
2167 }
2168
2169 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2170 {
2171         return may_create(dir, dentry, SECCLASS_LNK_FILE);
2172 }
2173
2174 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2175 {
2176         return may_create(dir, dentry, SECCLASS_DIR);
2177 }
2178
2179 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2180 {
2181         return may_link(dir, dentry, MAY_RMDIR);
2182 }
2183
2184 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2185 {
2186         int rc;
2187
2188         rc = secondary_ops->inode_mknod(dir, dentry, mode, dev);
2189         if (rc)
2190                 return rc;
2191
2192         return may_create(dir, dentry, inode_mode_to_security_class(mode));
2193 }
2194
2195 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2196                                 struct inode *new_inode, struct dentry *new_dentry)
2197 {
2198         return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2199 }
2200
2201 static int selinux_inode_readlink(struct dentry *dentry)
2202 {
2203         return dentry_has_perm(current, NULL, dentry, FILE__READ);
2204 }
2205
2206 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2207 {
2208         int rc;
2209
2210         rc = secondary_ops->inode_follow_link(dentry,nameidata);
2211         if (rc)
2212                 return rc;
2213         return dentry_has_perm(current, NULL, dentry, FILE__READ);
2214 }
2215
2216 static int selinux_inode_permission(struct inode *inode, int mask,
2217                                     struct nameidata *nd)
2218 {
2219         int rc;
2220
2221         rc = secondary_ops->inode_permission(inode, mask, nd);
2222         if (rc)
2223                 return rc;
2224
2225         if (!mask) {
2226                 /* No permission to check.  Existence test. */
2227                 return 0;
2228         }
2229
2230         return inode_has_perm(current, inode,
2231                                file_mask_to_av(inode->i_mode, mask), NULL);
2232 }
2233
2234 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2235 {
2236         int rc;
2237
2238         rc = secondary_ops->inode_setattr(dentry, iattr);
2239         if (rc)
2240                 return rc;
2241
2242         if (iattr->ia_valid & ATTR_FORCE)
2243                 return 0;
2244
2245         if (iattr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2246                                ATTR_ATIME_SET | ATTR_MTIME_SET))
2247                 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2248
2249         return dentry_has_perm(current, NULL, dentry, FILE__WRITE);
2250 }
2251
2252 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2253 {
2254         return dentry_has_perm(current, mnt, dentry, FILE__GETATTR);
2255 }
2256
2257 static int selinux_inode_setxattr(struct dentry *dentry, char *name, void *value, size_t size, int flags)
2258 {
2259         struct task_security_struct *tsec = current->security;
2260         struct inode *inode = dentry->d_inode;
2261         struct inode_security_struct *isec = inode->i_security;
2262         struct superblock_security_struct *sbsec;
2263         struct avc_audit_data ad;
2264         u32 newsid;
2265         int rc = 0;
2266
2267         if (strcmp(name, XATTR_NAME_SELINUX)) {
2268                 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2269                              sizeof XATTR_SECURITY_PREFIX - 1) &&
2270                     !capable(CAP_SYS_ADMIN)) {
2271                         /* A different attribute in the security namespace.
2272                            Restrict to administrator. */
2273                         return -EPERM;
2274                 }
2275
2276                 /* Not an attribute we recognize, so just check the
2277                    ordinary setattr permission. */
2278                 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2279         }
2280
2281         sbsec = inode->i_sb->s_security;
2282         if (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2283                 return -EOPNOTSUPP;
2284
2285         if ((current->fsuid != inode->i_uid) && !capable(CAP_FOWNER))
2286                 return -EPERM;
2287
2288         AVC_AUDIT_DATA_INIT(&ad,FS);
2289         ad.u.fs.dentry = dentry;
2290
2291         rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass,
2292                           FILE__RELABELFROM, &ad);
2293         if (rc)
2294                 return rc;
2295
2296         rc = security_context_to_sid(value, size, &newsid);
2297         if (rc)
2298                 return rc;
2299
2300         rc = avc_has_perm(tsec->sid, newsid, isec->sclass,
2301                           FILE__RELABELTO, &ad);
2302         if (rc)
2303                 return rc;
2304
2305         rc = security_validate_transition(isec->sid, newsid, tsec->sid,
2306                                           isec->sclass);
2307         if (rc)
2308                 return rc;
2309
2310         return avc_has_perm(newsid,
2311                             sbsec->sid,
2312                             SECCLASS_FILESYSTEM,
2313                             FILESYSTEM__ASSOCIATE,
2314                             &ad);
2315 }
2316
2317 static void selinux_inode_post_setxattr(struct dentry *dentry, char *name,
2318                                         void *value, size_t size, int flags)
2319 {
2320         struct inode *inode = dentry->d_inode;
2321         struct inode_security_struct *isec = inode->i_security;
2322         u32 newsid;
2323         int rc;
2324
2325         if (strcmp(name, XATTR_NAME_SELINUX)) {
2326                 /* Not an attribute we recognize, so nothing to do. */
2327                 return;
2328         }
2329
2330         rc = security_context_to_sid(value, size, &newsid);
2331         if (rc) {
2332                 printk(KERN_WARNING "%s:  unable to obtain SID for context "
2333                        "%s, rc=%d\n", __FUNCTION__, (char*)value, -rc);
2334                 return;
2335         }
2336
2337         isec->sid = newsid;
2338         return;
2339 }
2340
2341 static int selinux_inode_getxattr (struct dentry *dentry, char *name)
2342 {
2343         return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2344 }
2345
2346 static int selinux_inode_listxattr (struct dentry *dentry)
2347 {
2348         return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2349 }
2350
2351 static int selinux_inode_removexattr (struct dentry *dentry, char *name)
2352 {
2353         if (strcmp(name, XATTR_NAME_SELINUX)) {
2354                 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2355                              sizeof XATTR_SECURITY_PREFIX - 1) &&
2356                     !capable(CAP_SYS_ADMIN)) {
2357                         /* A different attribute in the security namespace.
2358                            Restrict to administrator. */
2359                         return -EPERM;
2360                 }
2361
2362                 /* Not an attribute we recognize, so just check the
2363                    ordinary setattr permission. Might want a separate
2364                    permission for removexattr. */
2365                 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2366         }
2367
2368         /* No one is allowed to remove a SELinux security label.
2369            You can change the label, but all data must be labeled. */
2370         return -EACCES;
2371 }
2372
2373 static const char *selinux_inode_xattr_getsuffix(void)
2374 {
2375       return XATTR_SELINUX_SUFFIX;
2376 }
2377
2378 /*
2379  * Copy the in-core inode security context value to the user.  If the
2380  * getxattr() prior to this succeeded, check to see if we need to
2381  * canonicalize the value to be finally returned to the user.
2382  *
2383  * Permission check is handled by selinux_inode_getxattr hook.
2384  */
2385 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err)
2386 {
2387         struct inode_security_struct *isec = inode->i_security;
2388
2389         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2390                 return -EOPNOTSUPP;
2391
2392         return selinux_getsecurity(isec->sid, buffer, size);
2393 }
2394
2395 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2396                                      const void *value, size_t size, int flags)
2397 {
2398         struct inode_security_struct *isec = inode->i_security;
2399         u32 newsid;
2400         int rc;
2401
2402         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2403                 return -EOPNOTSUPP;
2404
2405         if (!value || !size)
2406                 return -EACCES;
2407
2408         rc = security_context_to_sid((void*)value, size, &newsid);
2409         if (rc)
2410                 return rc;
2411
2412         isec->sid = newsid;
2413         return 0;
2414 }
2415
2416 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2417 {
2418         const int len = sizeof(XATTR_NAME_SELINUX);
2419         if (buffer && len <= buffer_size)
2420                 memcpy(buffer, XATTR_NAME_SELINUX, len);
2421         return len;
2422 }
2423
2424 /* file security operations */
2425
2426 static int selinux_file_permission(struct file *file, int mask)
2427 {
2428         int rc;
2429         struct inode *inode = file->f_path.dentry->d_inode;
2430
2431         if (!mask) {
2432                 /* No permission to check.  Existence test. */
2433                 return 0;
2434         }
2435
2436         /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2437         if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2438                 mask |= MAY_APPEND;
2439
2440         rc = file_has_perm(current, file,
2441                            file_mask_to_av(inode->i_mode, mask));
2442         if (rc)
2443                 return rc;
2444
2445         return selinux_netlbl_inode_permission(inode, mask);
2446 }
2447
2448 static int selinux_file_alloc_security(struct file *file)
2449 {
2450         return file_alloc_security(file);
2451 }
2452
2453 static void selinux_file_free_security(struct file *file)
2454 {
2455         file_free_security(file);
2456 }
2457
2458 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2459                               unsigned long arg)
2460 {
2461         int error = 0;
2462
2463         switch (cmd) {
2464                 case FIONREAD:
2465                 /* fall through */
2466                 case FIBMAP:
2467                 /* fall through */
2468                 case FIGETBSZ:
2469                 /* fall through */
2470                 case EXT2_IOC_GETFLAGS:
2471                 /* fall through */
2472                 case EXT2_IOC_GETVERSION:
2473                         error = file_has_perm(current, file, FILE__GETATTR);
2474                         break;
2475
2476                 case EXT2_IOC_SETFLAGS:
2477                 /* fall through */
2478                 case EXT2_IOC_SETVERSION:
2479                         error = file_has_perm(current, file, FILE__SETATTR);
2480                         break;
2481
2482                 /* sys_ioctl() checks */
2483                 case FIONBIO:
2484                 /* fall through */
2485                 case FIOASYNC:
2486                         error = file_has_perm(current, file, 0);
2487                         break;
2488
2489                 case KDSKBENT:
2490                 case KDSKBSENT:
2491                         error = task_has_capability(current,CAP_SYS_TTY_CONFIG);
2492                         break;
2493
2494                 /* default case assumes that the command will go
2495                  * to the file's ioctl() function.
2496                  */
2497                 default:
2498                         error = file_has_perm(current, file, FILE__IOCTL);
2499
2500         }
2501         return error;
2502 }
2503
2504 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
2505 {
2506         if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
2507                 /*
2508                  * We are making executable an anonymous mapping or a
2509                  * private file mapping that will also be writable.
2510                  * This has an additional check.
2511                  */
2512                 int rc = task_has_perm(current, current, PROCESS__EXECMEM);
2513                 if (rc)
2514                         return rc;
2515         }
2516
2517         if (file) {
2518                 /* read access is always possible with a mapping */
2519                 u32 av = FILE__READ;
2520
2521                 /* write access only matters if the mapping is shared */
2522                 if (shared && (prot & PROT_WRITE))
2523                         av |= FILE__WRITE;
2524
2525                 if (prot & PROT_EXEC)
2526                         av |= FILE__EXECUTE;
2527
2528                 return file_has_perm(current, file, av);
2529         }
2530         return 0;
2531 }
2532
2533 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
2534                              unsigned long prot, unsigned long flags)
2535 {
2536         int rc;
2537
2538         rc = secondary_ops->file_mmap(file, reqprot, prot, flags);
2539         if (rc)
2540                 return rc;
2541
2542         if (selinux_checkreqprot)
2543                 prot = reqprot;
2544
2545         return file_map_prot_check(file, prot,
2546                                    (flags & MAP_TYPE) == MAP_SHARED);
2547 }
2548
2549 static int selinux_file_mprotect(struct vm_area_struct *vma,
2550                                  unsigned long reqprot,
2551                                  unsigned long prot)
2552 {
2553         int rc;
2554
2555         rc = secondary_ops->file_mprotect(vma, reqprot, prot);
2556         if (rc)
2557                 return rc;
2558
2559         if (selinux_checkreqprot)
2560                 prot = reqprot;
2561
2562         if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
2563                 rc = 0;
2564                 if (vma->vm_start >= vma->vm_mm->start_brk &&
2565                     vma->vm_end <= vma->vm_mm->brk) {
2566                         rc = task_has_perm(current, current,
2567                                            PROCESS__EXECHEAP);
2568                 } else if (!vma->vm_file &&
2569                            vma->vm_start <= vma->vm_mm->start_stack &&
2570                            vma->vm_end >= vma->vm_mm->start_stack) {
2571                         rc = task_has_perm(current, current, PROCESS__EXECSTACK);
2572                 } else if (vma->vm_file && vma->anon_vma) {
2573                         /*
2574                          * We are making executable a file mapping that has
2575                          * had some COW done. Since pages might have been
2576                          * written, check ability to execute the possibly
2577                          * modified content.  This typically should only
2578                          * occur for text relocations.
2579                          */
2580                         rc = file_has_perm(current, vma->vm_file,
2581                                            FILE__EXECMOD);
2582                 }
2583                 if (rc)
2584                         return rc;
2585         }
2586
2587         return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
2588 }
2589
2590 static int selinux_file_lock(struct file *file, unsigned int cmd)
2591 {
2592         return file_has_perm(current, file, FILE__LOCK);
2593 }
2594
2595 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
2596                               unsigned long arg)
2597 {
2598         int err = 0;
2599
2600         switch (cmd) {
2601                 case F_SETFL:
2602                         if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
2603                                 err = -EINVAL;
2604                                 break;
2605                         }
2606
2607                         if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
2608                                 err = file_has_perm(current, file,FILE__WRITE);
2609                                 break;
2610                         }
2611                         /* fall through */
2612                 case F_SETOWN:
2613                 case F_SETSIG:
2614                 case F_GETFL:
2615                 case F_GETOWN:
2616                 case F_GETSIG:
2617                         /* Just check FD__USE permission */
2618                         err = file_has_perm(current, file, 0);
2619                         break;
2620                 case F_GETLK:
2621                 case F_SETLK:
2622                 case F_SETLKW:
2623 #if BITS_PER_LONG == 32
2624                 case F_GETLK64:
2625                 case F_SETLK64:
2626                 case F_SETLKW64:
2627 #endif
2628                         if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
2629                                 err = -EINVAL;
2630                                 break;
2631                         }
2632                         err = file_has_perm(current, file, FILE__LOCK);
2633                         break;
2634         }
2635
2636         return err;
2637 }
2638
2639 static int selinux_file_set_fowner(struct file *file)
2640 {
2641         struct task_security_struct *tsec;
2642         struct file_security_struct *fsec;
2643
2644         tsec = current->security;
2645         fsec = file->f_security;
2646         fsec->fown_sid = tsec->sid;
2647
2648         return 0;
2649 }
2650
2651 static int selinux_file_send_sigiotask(struct task_struct *tsk,
2652                                        struct fown_struct *fown, int signum)
2653 {
2654         struct file *file;
2655         u32 perm;
2656         struct task_security_struct *tsec;
2657         struct file_security_struct *fsec;
2658
2659         /* struct fown_struct is never outside the context of a struct file */
2660         file = (struct file *)((long)fown - offsetof(struct file,f_owner));
2661
2662         tsec = tsk->security;
2663         fsec = file->f_security;
2664
2665         if (!signum)
2666                 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
2667         else
2668                 perm = signal_to_av(signum);
2669
2670         return avc_has_perm(fsec->fown_sid, tsec->sid,
2671                             SECCLASS_PROCESS, perm, NULL);
2672 }
2673
2674 static int selinux_file_receive(struct file *file)
2675 {
2676         return file_has_perm(current, file, file_to_av(file));
2677 }
2678
2679 /* task security operations */
2680
2681 static int selinux_task_create(unsigned long clone_flags)
2682 {
2683         int rc;
2684
2685         rc = secondary_ops->task_create(clone_flags);
2686         if (rc)
2687                 return rc;
2688
2689         return task_has_perm(current, current, PROCESS__FORK);
2690 }
2691
2692 static int selinux_task_alloc_security(struct task_struct *tsk)
2693 {
2694         struct task_security_struct *tsec1, *tsec2;
2695         int rc;
2696
2697         tsec1 = current->security;
2698
2699         rc = task_alloc_security(tsk);
2700         if (rc)
2701                 return rc;
2702         tsec2 = tsk->security;
2703
2704         tsec2->osid = tsec1->osid;
2705         tsec2->sid = tsec1->sid;
2706
2707         /* Retain the exec, fs, key, and sock SIDs across fork */
2708         tsec2->exec_sid = tsec1->exec_sid;
2709         tsec2->create_sid = tsec1->create_sid;
2710         tsec2->keycreate_sid = tsec1->keycreate_sid;
2711         tsec2->sockcreate_sid = tsec1->sockcreate_sid;
2712
2713         return 0;
2714 }
2715
2716 static void selinux_task_free_security(struct task_struct *tsk)
2717 {
2718         task_free_security(tsk);
2719 }
2720
2721 static int selinux_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
2722 {
2723         /* Since setuid only affects the current process, and
2724            since the SELinux controls are not based on the Linux
2725            identity attributes, SELinux does not need to control
2726            this operation.  However, SELinux does control the use
2727            of the CAP_SETUID and CAP_SETGID capabilities using the
2728            capable hook. */
2729         return 0;
2730 }
2731
2732 static int selinux_task_post_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
2733 {
2734         return secondary_ops->task_post_setuid(id0,id1,id2,flags);
2735 }
2736
2737 static int selinux_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
2738 {
2739         /* See the comment for setuid above. */
2740         return 0;
2741 }
2742
2743 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
2744 {
2745         return task_has_perm(current, p, PROCESS__SETPGID);
2746 }
2747
2748 static int selinux_task_getpgid(struct task_struct *p)
2749 {
2750         return task_has_perm(current, p, PROCESS__GETPGID);
2751 }
2752
2753 static int selinux_task_getsid(struct task_struct *p)
2754 {
2755         return task_has_perm(current, p, PROCESS__GETSESSION);
2756 }
2757
2758 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
2759 {
2760         selinux_get_task_sid(p, secid);
2761 }
2762
2763 static int selinux_task_setgroups(struct group_info *group_info)
2764 {
2765         /* See the comment for setuid above. */
2766         return 0;
2767 }
2768
2769 static int selinux_task_setnice(struct task_struct *p, int nice)
2770 {
2771         int rc;
2772
2773         rc = secondary_ops->task_setnice(p, nice);
2774         if (rc)
2775                 return rc;
2776
2777         return task_has_perm(current,p, PROCESS__SETSCHED);
2778 }
2779
2780 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
2781 {
2782         return task_has_perm(current, p, PROCESS__SETSCHED);
2783 }
2784
2785 static int selinux_task_getioprio(struct task_struct *p)
2786 {
2787         return task_has_perm(current, p, PROCESS__GETSCHED);
2788 }
2789
2790 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
2791 {
2792         struct rlimit *old_rlim = current->signal->rlim + resource;
2793         int rc;
2794
2795         rc = secondary_ops->task_setrlimit(resource, new_rlim);
2796         if (rc)
2797                 return rc;
2798
2799         /* Control the ability to change the hard limit (whether
2800            lowering or raising it), so that the hard limit can
2801            later be used as a safe reset point for the soft limit
2802            upon context transitions. See selinux_bprm_apply_creds. */
2803         if (old_rlim->rlim_max != new_rlim->rlim_max)
2804                 return task_has_perm(current, current, PROCESS__SETRLIMIT);
2805
2806         return 0;
2807 }
2808
2809 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
2810 {
2811         return task_has_perm(current, p, PROCESS__SETSCHED);
2812 }
2813
2814 static int selinux_task_getscheduler(struct task_struct *p)
2815 {
2816         return task_has_perm(current, p, PROCESS__GETSCHED);
2817 }
2818
2819 static int selinux_task_movememory(struct task_struct *p)
2820 {
2821         return task_has_perm(current, p, PROCESS__SETSCHED);
2822 }
2823
2824 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
2825                                 int sig, u32 secid)
2826 {
2827         u32 perm;
2828         int rc;
2829         struct task_security_struct *tsec;
2830
2831         rc = secondary_ops->task_kill(p, info, sig, secid);
2832         if (rc)
2833                 return rc;
2834
2835         if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info)))
2836                 return 0;
2837
2838         if (!sig)
2839                 perm = PROCESS__SIGNULL; /* null signal; existence test */
2840         else
2841                 perm = signal_to_av(sig);
2842         tsec = p->security;
2843         if (secid)
2844                 rc = avc_has_perm(secid, tsec->sid, SECCLASS_PROCESS, perm, NULL);
2845         else
2846                 rc = task_has_perm(current, p, perm);
2847         return rc;
2848 }
2849
2850 static int selinux_task_prctl(int option,
2851                               unsigned long arg2,
2852                               unsigned long arg3,
2853                               unsigned long arg4,
2854                               unsigned long arg5)
2855 {
2856         /* The current prctl operations do not appear to require
2857            any SELinux controls since they merely observe or modify
2858            the state of the current process. */
2859         return 0;
2860 }
2861
2862 static int selinux_task_wait(struct task_struct *p)
2863 {
2864         u32 perm;
2865
2866         perm = signal_to_av(p->exit_signal);
2867
2868         return task_has_perm(p, current, perm);
2869 }
2870
2871 static void selinux_task_reparent_to_init(struct task_struct *p)
2872 {
2873         struct task_security_struct *tsec;
2874
2875         secondary_ops->task_reparent_to_init(p);
2876
2877         tsec = p->security;
2878         tsec->osid = tsec->sid;
2879         tsec->sid = SECINITSID_KERNEL;
2880         return;
2881 }
2882
2883 static void selinux_task_to_inode(struct task_struct *p,
2884                                   struct inode *inode)
2885 {
2886         struct task_security_struct *tsec = p->security;
2887         struct inode_security_struct *isec = inode->i_security;
2888
2889         isec->sid = tsec->sid;
2890         isec->initialized = 1;
2891         return;
2892 }
2893
2894 /* Returns error only if unable to parse addresses */
2895 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
2896                         struct avc_audit_data *ad, u8 *proto)
2897 {
2898         int offset, ihlen, ret = -EINVAL;
2899         struct iphdr _iph, *ih;
2900
2901         offset = skb->nh.raw - skb->data;
2902         ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
2903         if (ih == NULL)
2904                 goto out;
2905
2906         ihlen = ih->ihl * 4;
2907         if (ihlen < sizeof(_iph))
2908                 goto out;
2909
2910         ad->u.net.v4info.saddr = ih->saddr;
2911         ad->u.net.v4info.daddr = ih->daddr;
2912         ret = 0;
2913
2914         if (proto)
2915                 *proto = ih->protocol;
2916
2917         switch (ih->protocol) {
2918         case IPPROTO_TCP: {
2919                 struct tcphdr _tcph, *th;
2920
2921                 if (ntohs(ih->frag_off) & IP_OFFSET)
2922                         break;
2923
2924                 offset += ihlen;
2925                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
2926                 if (th == NULL)
2927                         break;
2928
2929                 ad->u.net.sport = th->source;
2930                 ad->u.net.dport = th->dest;
2931                 break;
2932         }
2933         
2934         case IPPROTO_UDP: {
2935                 struct udphdr _udph, *uh;
2936                 
2937                 if (ntohs(ih->frag_off) & IP_OFFSET)
2938                         break;
2939                         
2940                 offset += ihlen;
2941                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
2942                 if (uh == NULL)
2943                         break;  
2944
2945                 ad->u.net.sport = uh->source;
2946                 ad->u.net.dport = uh->dest;
2947                 break;
2948         }
2949
2950         case IPPROTO_DCCP: {
2951                 struct dccp_hdr _dccph, *dh;
2952
2953                 if (ntohs(ih->frag_off) & IP_OFFSET)
2954                         break;
2955
2956                 offset += ihlen;
2957                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
2958                 if (dh == NULL)
2959                         break;
2960
2961                 ad->u.net.sport = dh->dccph_sport;
2962                 ad->u.net.dport = dh->dccph_dport;
2963                 break;
2964         }
2965
2966         default:
2967                 break;
2968         }
2969 out:
2970         return ret;
2971 }
2972
2973 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2974
2975 /* Returns error only if unable to parse addresses */
2976 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
2977                         struct avc_audit_data *ad, u8 *proto)
2978 {
2979         u8 nexthdr;
2980         int ret = -EINVAL, offset;
2981         struct ipv6hdr _ipv6h, *ip6;
2982
2983         offset = skb->nh.raw - skb->data;
2984         ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
2985         if (ip6 == NULL)
2986                 goto out;
2987
2988         ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
2989         ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
2990         ret = 0;
2991
2992         nexthdr = ip6->nexthdr;
2993         offset += sizeof(_ipv6h);
2994         offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
2995         if (offset < 0)
2996                 goto out;
2997
2998         if (proto)
2999                 *proto = nexthdr;
3000
3001         switch (nexthdr) {
3002         case IPPROTO_TCP: {
3003                 struct tcphdr _tcph, *th;
3004
3005                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3006                 if (th == NULL)
3007                         break;
3008
3009                 ad->u.net.sport = th->source;
3010                 ad->u.net.dport = th->dest;
3011                 break;
3012         }
3013
3014         case IPPROTO_UDP: {
3015                 struct udphdr _udph, *uh;
3016
3017                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3018                 if (uh == NULL)
3019                         break;
3020
3021                 ad->u.net.sport = uh->source;
3022                 ad->u.net.dport = uh->dest;
3023                 break;
3024         }
3025
3026         case IPPROTO_DCCP: {
3027                 struct dccp_hdr _dccph, *dh;
3028
3029                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3030                 if (dh == NULL)
3031                         break;
3032
3033                 ad->u.net.sport = dh->dccph_sport;
3034                 ad->u.net.dport = dh->dccph_dport;
3035                 break;
3036         }
3037
3038         /* includes fragments */
3039         default:
3040                 break;
3041         }
3042 out:
3043         return ret;
3044 }
3045
3046 #endif /* IPV6 */
3047
3048 static int selinux_parse_skb(struct sk_buff *skb, struct avc_audit_data *ad,
3049                              char **addrp, int *len, int src, u8 *proto)
3050 {
3051         int ret = 0;
3052
3053         switch (ad->u.net.family) {
3054         case PF_INET:
3055                 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3056                 if (ret || !addrp)
3057                         break;
3058                 *len = 4;
3059                 *addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3060                                         &ad->u.net.v4info.daddr);
3061                 break;
3062
3063 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3064         case PF_INET6:
3065                 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3066                 if (ret || !addrp)
3067                         break;
3068                 *len = 16;
3069                 *addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3070                                         &ad->u.net.v6info.daddr);
3071                 break;
3072 #endif  /* IPV6 */
3073         default:
3074                 break;
3075         }
3076
3077         return ret;
3078 }
3079
3080 /* socket security operations */
3081 static int socket_has_perm(struct task_struct *task, struct socket *sock,
3082                            u32 perms)
3083 {
3084         struct inode_security_struct *isec;
3085         struct task_security_struct *tsec;
3086         struct avc_audit_data ad;
3087         int err = 0;
3088
3089         tsec = task->security;
3090         isec = SOCK_INODE(sock)->i_security;
3091
3092         if (isec->sid == SECINITSID_KERNEL)
3093                 goto out;
3094
3095         AVC_AUDIT_DATA_INIT(&ad,NET);
3096         ad.u.net.sk = sock->sk;
3097         err = avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
3098
3099 out:
3100         return err;
3101 }
3102
3103 static int selinux_socket_create(int family, int type,
3104                                  int protocol, int kern)
3105 {
3106         int err = 0;
3107         struct task_security_struct *tsec;
3108         u32 newsid;
3109
3110         if (kern)
3111                 goto out;
3112
3113         tsec = current->security;
3114         newsid = tsec->sockcreate_sid ? : tsec->sid;
3115         err = avc_has_perm(tsec->sid, newsid,
3116                            socket_type_to_security_class(family, type,
3117                            protocol), SOCKET__CREATE, NULL);
3118
3119 out:
3120         return err;
3121 }
3122
3123 static int selinux_socket_post_create(struct socket *sock, int family,
3124                                       int type, int protocol, int kern)
3125 {
3126         int err = 0;
3127         struct inode_security_struct *isec;
3128         struct task_security_struct *tsec;
3129         struct sk_security_struct *sksec;
3130         u32 newsid;
3131
3132         isec = SOCK_INODE(sock)->i_security;
3133
3134         tsec = current->security;
3135         newsid = tsec->sockcreate_sid ? : tsec->sid;
3136         isec->sclass = socket_type_to_security_class(family, type, protocol);
3137         isec->sid = kern ? SECINITSID_KERNEL : newsid;
3138         isec->initialized = 1;
3139
3140         if (sock->sk) {
3141                 sksec = sock->sk->sk_security;
3142                 sksec->sid = isec->sid;
3143                 err = selinux_netlbl_socket_post_create(sock);
3144         }
3145
3146         return err;
3147 }
3148
3149 /* Range of port numbers used to automatically bind.
3150    Need to determine whether we should perform a name_bind
3151    permission check between the socket and the port number. */
3152 #define ip_local_port_range_0 sysctl_local_port_range[0]
3153 #define ip_local_port_range_1 sysctl_local_port_range[1]
3154
3155 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3156 {
3157         u16 family;
3158         int err;
3159
3160         err = socket_has_perm(current, sock, SOCKET__BIND);
3161         if (err)
3162                 goto out;
3163
3164         /*
3165          * If PF_INET or PF_INET6, check name_bind permission for the port.
3166          * Multiple address binding for SCTP is not supported yet: we just
3167          * check the first address now.
3168          */
3169         family = sock->sk->sk_family;
3170         if (family == PF_INET || family == PF_INET6) {
3171                 char *addrp;
3172                 struct inode_security_struct *isec;
3173                 struct task_security_struct *tsec;
3174                 struct avc_audit_data ad;
3175                 struct sockaddr_in *addr4 = NULL;
3176                 struct sockaddr_in6 *addr6 = NULL;
3177                 unsigned short snum;
3178                 struct sock *sk = sock->sk;
3179                 u32 sid, node_perm, addrlen;
3180
3181                 tsec = current->security;
3182                 isec = SOCK_INODE(sock)->i_security;
3183
3184                 if (family == PF_INET) {
3185                         addr4 = (struct sockaddr_in *)address;
3186                         snum = ntohs(addr4->sin_port);
3187                         addrlen = sizeof(addr4->sin_addr.s_addr);
3188                         addrp = (char *)&addr4->sin_addr.s_addr;
3189                 } else {
3190                         addr6 = (struct sockaddr_in6 *)address;
3191                         snum = ntohs(addr6->sin6_port);
3192                         addrlen = sizeof(addr6->sin6_addr.s6_addr);
3193                         addrp = (char *)&addr6->sin6_addr.s6_addr;
3194                 }
3195
3196                 if (snum&&(snum < max(PROT_SOCK,ip_local_port_range_0) ||
3197                            snum > ip_local_port_range_1)) {
3198                         err = security_port_sid(sk->sk_family, sk->sk_type,
3199                                                 sk->sk_protocol, snum, &sid);
3200                         if (err)
3201                                 goto out;
3202                         AVC_AUDIT_DATA_INIT(&ad,NET);
3203                         ad.u.net.sport = htons(snum);
3204                         ad.u.net.family = family;
3205                         err = avc_has_perm(isec->sid, sid,
3206                                            isec->sclass,
3207                                            SOCKET__NAME_BIND, &ad);
3208                         if (err)
3209                                 goto out;
3210                 }
3211                 
3212                 switch(isec->sclass) {
3213                 case SECCLASS_TCP_SOCKET:
3214                         node_perm = TCP_SOCKET__NODE_BIND;
3215                         break;
3216                         
3217                 case SECCLASS_UDP_SOCKET:
3218                         node_perm = UDP_SOCKET__NODE_BIND;
3219                         break;
3220
3221                 case SECCLASS_DCCP_SOCKET:
3222                         node_perm = DCCP_SOCKET__NODE_BIND;
3223                         break;
3224
3225                 default:
3226                         node_perm = RAWIP_SOCKET__NODE_BIND;
3227                         break;
3228                 }
3229                 
3230                 err = security_node_sid(family, addrp, addrlen, &sid);
3231                 if (err)
3232                         goto out;
3233                 
3234                 AVC_AUDIT_DATA_INIT(&ad,NET);
3235                 ad.u.net.sport = htons(snum);
3236                 ad.u.net.family = family;
3237
3238                 if (family == PF_INET)
3239                         ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3240                 else
3241                         ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3242
3243                 err = avc_has_perm(isec->sid, sid,
3244                                    isec->sclass, node_perm, &ad);
3245                 if (err)
3246                         goto out;
3247         }
3248 out:
3249         return err;
3250 }
3251
3252 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3253 {
3254         struct inode_security_struct *isec;
3255         int err;
3256
3257         err = socket_has_perm(current, sock, SOCKET__CONNECT);
3258         if (err)
3259                 return err;
3260
3261         /*
3262          * If a TCP or DCCP socket, check name_connect permission for the port.
3263          */
3264         isec = SOCK_INODE(sock)->i_security;
3265         if (isec->sclass == SECCLASS_TCP_SOCKET ||
3266             isec->sclass == SECCLASS_DCCP_SOCKET) {
3267                 struct sock *sk = sock->sk;
3268                 struct avc_audit_data ad;
3269                 struct sockaddr_in *addr4 = NULL;
3270                 struct sockaddr_in6 *addr6 = NULL;
3271                 unsigned short snum;
3272                 u32 sid, perm;
3273
3274                 if (sk->sk_family == PF_INET) {
3275                         addr4 = (struct sockaddr_in *)address;
3276                         if (addrlen < sizeof(struct sockaddr_in))
3277                                 return -EINVAL;
3278                         snum = ntohs(addr4->sin_port);
3279                 } else {
3280                         addr6 = (struct sockaddr_in6 *)address;
3281                         if (addrlen < SIN6_LEN_RFC2133)
3282                                 return -EINVAL;
3283                         snum = ntohs(addr6->sin6_port);
3284                 }
3285
3286                 err = security_port_sid(sk->sk_family, sk->sk_type,
3287                                         sk->sk_protocol, snum, &sid);
3288                 if (err)
3289                         goto out;
3290
3291                 perm = (isec->sclass == SECCLASS_TCP_SOCKET) ?
3292                        TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3293
3294                 AVC_AUDIT_DATA_INIT(&ad,NET);
3295                 ad.u.net.dport = htons(snum);
3296                 ad.u.net.family = sk->sk_family;
3297                 err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad);
3298                 if (err)
3299                         goto out;
3300         }
3301
3302 out:
3303         return err;
3304 }
3305
3306 static int selinux_socket_listen(struct socket *sock, int backlog)
3307 {
3308         return socket_has_perm(current, sock, SOCKET__LISTEN);
3309 }
3310
3311 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3312 {
3313         int err;
3314         struct inode_security_struct *isec;
3315         struct inode_security_struct *newisec;
3316
3317         err = socket_has_perm(current, sock, SOCKET__ACCEPT);
3318         if (err)
3319                 return err;
3320
3321         newisec = SOCK_INODE(newsock)->i_security;
3322
3323         isec = SOCK_INODE(sock)->i_security;
3324         newisec->sclass = isec->sclass;
3325         newisec->sid = isec->sid;
3326         newisec->initialized = 1;
3327
3328         return 0;
3329 }
3330
3331 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3332                                   int size)
3333 {
3334         int rc;
3335
3336         rc = socket_has_perm(current, sock, SOCKET__WRITE);
3337         if (rc)
3338                 return rc;
3339
3340         return selinux_netlbl_inode_permission(SOCK_INODE(sock), MAY_WRITE);
3341 }
3342
3343 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3344                                   int size, int flags)
3345 {
3346         return socket_has_perm(current, sock, SOCKET__READ);
3347 }
3348
3349 static int selinux_socket_getsockname(struct socket *sock)
3350 {
3351         return socket_has_perm(current, sock, SOCKET__GETATTR);
3352 }
3353
3354 static int selinux_socket_getpeername(struct socket *sock)
3355 {
3356         return socket_has_perm(current, sock, SOCKET__GETATTR);
3357 }
3358
3359 static int selinux_socket_setsockopt(struct socket *sock,int level,int optname)
3360 {
3361         int err;
3362
3363         err = socket_has_perm(current, sock, SOCKET__SETOPT);
3364         if (err)
3365                 return err;
3366
3367         return selinux_netlbl_socket_setsockopt(sock, level, optname);
3368 }
3369
3370 static int selinux_socket_getsockopt(struct socket *sock, int level,
3371                                      int optname)
3372 {
3373         return socket_has_perm(current, sock, SOCKET__GETOPT);
3374 }
3375
3376 static int selinux_socket_shutdown(struct socket *sock, int how)
3377 {
3378         return socket_has_perm(current, sock, SOCKET__SHUTDOWN);
3379 }
3380
3381 static int selinux_socket_unix_stream_connect(struct socket *sock,
3382                                               struct socket *other,
3383                                               struct sock *newsk)
3384 {
3385         struct sk_security_struct *ssec;
3386         struct inode_security_struct *isec;
3387         struct inode_security_struct *other_isec;
3388         struct avc_audit_data ad;
3389         int err;
3390
3391         err = secondary_ops->unix_stream_connect(sock, other, newsk);
3392         if (err)
3393                 return err;
3394
3395         isec = SOCK_INODE(sock)->i_security;
3396         other_isec = SOCK_INODE(other)->i_security;
3397
3398         AVC_AUDIT_DATA_INIT(&ad,NET);
3399         ad.u.net.sk = other->sk;
3400
3401         err = avc_has_perm(isec->sid, other_isec->sid,
3402                            isec->sclass,
3403                            UNIX_STREAM_SOCKET__CONNECTTO, &ad);
3404         if (err)
3405                 return err;
3406
3407         /* connecting socket */
3408         ssec = sock->sk->sk_security;
3409         ssec->peer_sid = other_isec->sid;
3410         
3411         /* server child socket */
3412         ssec = newsk->sk_security;
3413         ssec->peer_sid = isec->sid;
3414         err = security_sid_mls_copy(other_isec->sid, ssec->peer_sid, &ssec->sid);
3415
3416         return err;
3417 }
3418
3419 static int selinux_socket_unix_may_send(struct socket *sock,
3420                                         struct socket *other)
3421 {
3422         struct inode_security_struct *isec;
3423         struct inode_security_struct *other_isec;
3424         struct avc_audit_data ad;
3425         int err;
3426
3427         isec = SOCK_INODE(sock)->i_security;
3428         other_isec = SOCK_INODE(other)->i_security;
3429
3430         AVC_AUDIT_DATA_INIT(&ad,NET);
3431         ad.u.net.sk = other->sk;
3432
3433         err = avc_has_perm(isec->sid, other_isec->sid,
3434                            isec->sclass, SOCKET__SENDTO, &ad);
3435         if (err)
3436                 return err;
3437
3438         return 0;
3439 }
3440
3441 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
3442                 struct avc_audit_data *ad, u16 family, char *addrp, int len)
3443 {
3444         int err = 0;
3445         u32 netif_perm, node_perm, node_sid, if_sid, recv_perm = 0;
3446         struct socket *sock;
3447         u16 sock_class = 0;
3448         u32 sock_sid = 0;
3449
3450         read_lock_bh(&sk->sk_callback_lock);
3451         sock = sk->sk_socket;
3452         if (sock) {
3453                 struct inode *inode;
3454                 inode = SOCK_INODE(sock);
3455                 if (inode) {
3456                         struct inode_security_struct *isec;
3457                         isec = inode->i_security;
3458                         sock_sid = isec->sid;
3459                         sock_class = isec->sclass;
3460                 }
3461         }
3462         read_unlock_bh(&sk->sk_callback_lock);
3463         if (!sock_sid)
3464                 goto out;
3465
3466         if (!skb->dev)
3467                 goto out;
3468
3469         err = sel_netif_sids(skb->dev, &if_sid, NULL);
3470         if (err)
3471                 goto out;
3472
3473         switch (sock_class) {
3474         case SECCLASS_UDP_SOCKET:
3475                 netif_perm = NETIF__UDP_RECV;
3476                 node_perm = NODE__UDP_RECV;
3477                 recv_perm = UDP_SOCKET__RECV_MSG;
3478                 break;
3479         
3480         case SECCLASS_TCP_SOCKET:
3481                 netif_perm = NETIF__TCP_RECV;
3482                 node_perm = NODE__TCP_RECV;
3483                 recv_perm = TCP_SOCKET__RECV_MSG;
3484                 break;
3485
3486         case SECCLASS_DCCP_SOCKET:
3487                 netif_perm = NETIF__DCCP_RECV;
3488                 node_perm = NODE__DCCP_RECV;
3489                 recv_perm = DCCP_SOCKET__RECV_MSG;
3490                 break;
3491
3492         default:
3493                 netif_perm = NETIF__RAWIP_RECV;
3494                 node_perm = NODE__RAWIP_RECV;
3495                 break;
3496         }
3497
3498         err = avc_has_perm(sock_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
3499         if (err)
3500                 goto out;
3501         
3502         err = security_node_sid(family, addrp, len, &node_sid);
3503         if (err)
3504                 goto out;
3505         
3506         err = avc_has_perm(sock_sid, node_sid, SECCLASS_NODE, node_perm, ad);
3507         if (err)
3508                 goto out;
3509
3510         if (recv_perm) {
3511                 u32 port_sid;
3512
3513                 err = security_port_sid(sk->sk_family, sk->sk_type,
3514                                         sk->sk_protocol, ntohs(ad->u.net.sport),
3515                                         &port_sid);
3516                 if (err)
3517                         goto out;
3518
3519                 err = avc_has_perm(sock_sid, port_sid,
3520                                    sock_class, recv_perm, ad);
3521         }
3522
3523 out:
3524         return err;
3525 }
3526
3527 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
3528 {
3529         u16 family;
3530         char *addrp;
3531         int len, err = 0;
3532         struct avc_audit_data ad;
3533         struct sk_security_struct *sksec = sk->sk_security;
3534
3535         family = sk->sk_family;
3536         if (family != PF_INET && family != PF_INET6)
3537                 goto out;
3538
3539         /* Handle mapped IPv4 packets arriving via IPv6 sockets */
3540         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
3541                 family = PF_INET;
3542
3543         AVC_AUDIT_DATA_INIT(&ad, NET);
3544         ad.u.net.netif = skb->dev ? skb->dev->name : "[unknown]";
3545         ad.u.net.family = family;
3546
3547         err = selinux_parse_skb(skb, &ad, &addrp, &len, 1, NULL);
3548         if (err)
3549                 goto out;
3550
3551         if (selinux_compat_net)
3552                 err = selinux_sock_rcv_skb_compat(sk, skb, &ad, family,
3553                                                   addrp, len);
3554         else
3555                 err = avc_has_perm(sksec->sid, skb->secmark, SECCLASS_PACKET,
3556                                    PACKET__RECV, &ad);
3557         if (err)
3558                 goto out;
3559
3560         err = selinux_netlbl_sock_rcv_skb(sksec, skb, &ad);
3561         if (err)
3562                 goto out;
3563
3564         err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
3565 out:    
3566         return err;
3567 }
3568
3569 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
3570                                             int __user *optlen, unsigned len)
3571 {
3572         int err = 0;
3573         char *scontext;
3574         u32 scontext_len;
3575         struct sk_security_struct *ssec;
3576         struct inode_security_struct *isec;
3577         u32 peer_sid = SECSID_NULL;
3578
3579         isec = SOCK_INODE(sock)->i_security;
3580
3581         if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
3582             isec->sclass == SECCLASS_TCP_SOCKET) {
3583                 ssec = sock->sk->sk_security;
3584                 peer_sid = ssec->peer_sid;
3585         }
3586         if (peer_sid == SECSID_NULL) {
3587                 err = -ENOPROTOOPT;
3588                 goto out;
3589         }
3590
3591         err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
3592
3593         if (err)
3594                 goto out;
3595
3596         if (scontext_len > len) {
3597                 err = -ERANGE;
3598                 goto out_len;
3599         }
3600
3601         if (copy_to_user(optval, scontext, scontext_len))
3602                 err = -EFAULT;
3603
3604 out_len:
3605         if (put_user(scontext_len, optlen))
3606                 err = -EFAULT;
3607
3608         kfree(scontext);
3609 out:    
3610         return err;
3611 }
3612
3613 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
3614 {
3615         u32 peer_secid = SECSID_NULL;
3616         int err = 0;
3617
3618         if (sock && sock->sk->sk_family == PF_UNIX)
3619                 selinux_get_inode_sid(SOCK_INODE(sock), &peer_secid);
3620         else if (skb)
3621                 security_skb_extlbl_sid(skb,
3622                                         SECINITSID_UNLABELED,
3623                                         &peer_secid);
3624
3625         if (peer_secid == SECSID_NULL)
3626                 err = -EINVAL;
3627         *secid = peer_secid;
3628
3629         return err;
3630 }
3631
3632 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
3633 {
3634         return sk_alloc_security(sk, family, priority);
3635 }
3636
3637 static void selinux_sk_free_security(struct sock *sk)
3638 {
3639         sk_free_security(sk);
3640 }
3641
3642 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
3643 {
3644         struct sk_security_struct *ssec = sk->sk_security;
3645         struct sk_security_struct *newssec = newsk->sk_security;
3646
3647         newssec->sid = ssec->sid;
3648         newssec->peer_sid = ssec->peer_sid;
3649
3650         selinux_netlbl_sk_security_clone(ssec, newssec);
3651 }
3652
3653 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
3654 {
3655         if (!sk)
3656                 *secid = SECINITSID_ANY_SOCKET;
3657         else {
3658                 struct sk_security_struct *sksec = sk->sk_security;
3659
3660                 *secid = sksec->sid;
3661         }
3662 }
3663
3664 static void selinux_sock_graft(struct sock* sk, struct socket *parent)
3665 {
3666         struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
3667         struct sk_security_struct *sksec = sk->sk_security;
3668
3669         if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
3670             sk->sk_family == PF_UNIX)
3671                 isec->sid = sksec->sid;
3672
3673         selinux_netlbl_sock_graft(sk, parent);
3674 }
3675
3676 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
3677                                      struct request_sock *req)
3678 {
3679         struct sk_security_struct *sksec = sk->sk_security;
3680         int err;
3681         u32 newsid;
3682         u32 peersid;
3683
3684         security_skb_extlbl_sid(skb, SECINITSID_UNLABELED, &peersid);
3685         if (peersid == SECSID_NULL) {
3686                 req->secid = sksec->sid;
3687                 req->peer_secid = SECSID_NULL;
3688                 return 0;
3689         }
3690
3691         err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
3692         if (err)
3693                 return err;
3694
3695         req->secid = newsid;
3696         req->peer_secid = peersid;
3697         return 0;
3698 }
3699
3700 static void selinux_inet_csk_clone(struct sock *newsk,
3701                                    const struct request_sock *req)
3702 {
3703         struct sk_security_struct *newsksec = newsk->sk_security;
3704
3705         newsksec->sid = req->secid;
3706         newsksec->peer_sid = req->peer_secid;
3707         /* NOTE: Ideally, we should also get the isec->sid for the
3708            new socket in sync, but we don't have the isec available yet.
3709            So we will wait until sock_graft to do it, by which
3710            time it will have been created and available. */
3711
3712         /* We don't need to take any sort of lock here as we are the only
3713          * thread with access to newsksec */
3714         selinux_netlbl_sk_security_reset(newsksec, req->rsk_ops->family);
3715 }
3716
3717 static void selinux_inet_conn_established(struct sock *sk,
3718                                 struct sk_buff *skb)
3719 {
3720         struct sk_security_struct *sksec = sk->sk_security;
3721
3722         security_skb_extlbl_sid(skb, SECINITSID_UNLABELED, &sksec->peer_sid);
3723 }
3724
3725 static void selinux_req_classify_flow(const struct request_sock *req,
3726                                       struct flowi *fl)
3727 {
3728         fl->secid = req->secid;
3729 }
3730
3731 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
3732 {
3733         int err = 0;
3734         u32 perm;
3735         struct nlmsghdr *nlh;
3736         struct socket *sock = sk->sk_socket;
3737         struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3738         
3739         if (skb->len < NLMSG_SPACE(0)) {
3740                 err = -EINVAL;
3741                 goto out;
3742         }
3743         nlh = (struct nlmsghdr *)skb->data;
3744         
3745         err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm);
3746         if (err) {
3747                 if (err == -EINVAL) {
3748                         audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
3749                                   "SELinux:  unrecognized netlink message"
3750                                   " type=%hu for sclass=%hu\n",
3751                                   nlh->nlmsg_type, isec->sclass);
3752                         if (!selinux_enforcing)
3753                                 err = 0;
3754                 }
3755
3756                 /* Ignore */
3757                 if (err == -ENOENT)
3758                         err = 0;
3759                 goto out;
3760         }
3761
3762         err = socket_has_perm(current, sock, perm);
3763 out:
3764         return err;
3765 }
3766
3767 #ifdef CONFIG_NETFILTER
3768
3769 static int selinux_ip_postroute_last_compat(struct sock *sk, struct net_device *dev,
3770                                             struct avc_audit_data *ad,
3771                                             u16 family, char *addrp, int len)
3772 {
3773         int err = 0;
3774         u32 netif_perm, node_perm, node_sid, if_sid, send_perm = 0;
3775         struct socket *sock;
3776         struct inode *inode;
3777         struct inode_security_struct *isec;
3778
3779         sock = sk->sk_socket;
3780         if (!sock)
3781                 goto out;
3782
3783         inode = SOCK_INODE(sock);
3784         if (!inode)
3785                 goto out;
3786
3787         isec = inode->i_security;
3788         
3789         err = sel_netif_sids(dev, &if_sid, NULL);
3790         if (err)
3791                 goto out;
3792
3793         switch (isec->sclass) {
3794         case SECCLASS_UDP_SOCKET:
3795                 netif_perm = NETIF__UDP_SEND;
3796                 node_perm = NODE__UDP_SEND;
3797                 send_perm = UDP_SOCKET__SEND_MSG;
3798                 break;
3799         
3800         case SECCLASS_TCP_SOCKET:
3801                 netif_perm = NETIF__TCP_SEND;
3802                 node_perm = NODE__TCP_SEND;
3803                 send_perm = TCP_SOCKET__SEND_MSG;
3804                 break;
3805
3806         case SECCLASS_DCCP_SOCKET:
3807                 netif_perm = NETIF__DCCP_SEND;
3808                 node_perm = NODE__DCCP_SEND;
3809                 send_perm = DCCP_SOCKET__SEND_MSG;
3810                 break;
3811
3812         default:
3813                 netif_perm = NETIF__RAWIP_SEND;
3814                 node_perm = NODE__RAWIP_SEND;
3815                 break;
3816         }
3817
3818         err = avc_has_perm(isec->sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
3819         if (err)
3820                 goto out;
3821                 
3822         err = security_node_sid(family, addrp, len, &node_sid);
3823         if (err)
3824                 goto out;
3825         
3826         err = avc_has_perm(isec->sid, node_sid, SECCLASS_NODE, node_perm, ad);
3827         if (err)
3828                 goto out;
3829
3830         if (send_perm) {
3831                 u32 port_sid;
3832                 
3833                 err = security_port_sid(sk->sk_family,
3834                                         sk->sk_type,
3835                                         sk->sk_protocol,
3836                                         ntohs(ad->u.net.dport),
3837                                         &port_sid);
3838                 if (err)
3839                         goto out;
3840
3841                 err = avc_has_perm(isec->sid, port_sid, isec->sclass,
3842                                    send_perm, ad);
3843         }
3844 out:
3845         return err;
3846 }
3847
3848 static unsigned int selinux_ip_postroute_last(unsigned int hooknum,
3849                                               struct sk_buff **pskb,
3850                                               const struct net_device *in,
3851                                               const struct net_device *out,
3852                                               int (*okfn)(struct sk_buff *),
3853                                               u16 family)
3854 {
3855         char *addrp;
3856         int len, err = 0;
3857         struct sock *sk;
3858         struct sk_buff *skb = *pskb;
3859         struct avc_audit_data ad;
3860         struct net_device *dev = (struct net_device *)out;
3861         struct sk_security_struct *sksec;
3862         u8 proto;
3863
3864         sk = skb->sk;
3865         if (!sk)
3866                 goto out;
3867
3868         sksec = sk->sk_security;
3869
3870         AVC_AUDIT_DATA_INIT(&ad, NET);
3871         ad.u.net.netif = dev->name;
3872         ad.u.net.family = family;
3873
3874         err = selinux_parse_skb(skb, &ad, &addrp, &len, 0, &proto);
3875         if (err)
3876                 goto out;
3877
3878         if (selinux_compat_net)
3879                 err = selinux_ip_postroute_last_compat(sk, dev, &ad,
3880                                                        family, addrp, len);
3881         else
3882                 err = avc_has_perm(sksec->sid, skb->secmark, SECCLASS_PACKET,
3883                                    PACKET__SEND, &ad);
3884
3885         if (err)
3886                 goto out;
3887
3888         err = selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto);
3889 out:
3890         return err ? NF_DROP : NF_ACCEPT;
3891 }
3892
3893 static unsigned int selinux_ipv4_postroute_last(unsigned int hooknum,
3894                                                 struct sk_buff **pskb,
3895                                                 const struct net_device *in,
3896                                                 const struct net_device *out,
3897                                                 int (*okfn)(struct sk_buff *))
3898 {
3899         return selinux_ip_postroute_last(hooknum, pskb, in, out, okfn, PF_INET);
3900 }
3901
3902 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3903
3904 static unsigned int selinux_ipv6_postroute_last(unsigned int hooknum,
3905                                                 struct sk_buff **pskb,
3906                                                 const struct net_device *in,
3907                                                 const struct net_device *out,
3908                                                 int (*okfn)(struct sk_buff *))
3909 {
3910         return selinux_ip_postroute_last(hooknum, pskb, in, out, okfn, PF_INET6);
3911 }
3912
3913 #endif  /* IPV6 */
3914
3915 #endif  /* CONFIG_NETFILTER */
3916
3917 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
3918 {
3919         int err;
3920
3921         err = secondary_ops->netlink_send(sk, skb);
3922         if (err)
3923                 return err;
3924
3925         if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS)
3926                 err = selinux_nlmsg_perm(sk, skb);
3927
3928         return err;
3929 }
3930
3931 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
3932 {
3933         int err;
3934         struct avc_audit_data ad;
3935
3936         err = secondary_ops->netlink_recv(skb, capability);
3937         if (err)
3938                 return err;
3939
3940         AVC_AUDIT_DATA_INIT(&ad, CAP);
3941         ad.u.cap = capability;
3942
3943         return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
3944                             SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
3945 }
3946
3947 static int ipc_alloc_security(struct task_struct *task,
3948                               struct kern_ipc_perm *perm,
3949                               u16 sclass)
3950 {
3951         struct task_security_struct *tsec = task->security;
3952         struct ipc_security_struct *isec;
3953
3954         isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
3955         if (!isec)
3956                 return -ENOMEM;
3957
3958         isec->sclass = sclass;
3959         isec->ipc_perm = perm;
3960         isec->sid = tsec->sid;
3961         perm->security = isec;
3962
3963         return 0;
3964 }
3965
3966 static void ipc_free_security(struct kern_ipc_perm *perm)
3967 {
3968         struct ipc_security_struct *isec = perm->security;
3969         perm->security = NULL;
3970         kfree(isec);
3971 }
3972
3973 static int msg_msg_alloc_security(struct msg_msg *msg)
3974 {
3975         struct msg_security_struct *msec;
3976
3977         msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
3978         if (!msec)
3979                 return -ENOMEM;
3980
3981         msec->msg = msg;
3982         msec->sid = SECINITSID_UNLABELED;
3983         msg->security = msec;
3984
3985         return 0;
3986 }
3987
3988 static void msg_msg_free_security(struct msg_msg *msg)
3989 {
3990         struct msg_security_struct *msec = msg->security;
3991
3992         msg->security = NULL;
3993         kfree(msec);
3994 }
3995
3996 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
3997                         u32 perms)
3998 {
3999         struct task_security_struct *tsec;
4000         struct ipc_security_struct *isec;
4001         struct avc_audit_data ad;
4002
4003         tsec = current->security;
4004         isec = ipc_perms->security;
4005
4006         AVC_AUDIT_DATA_INIT(&ad, IPC);
4007         ad.u.ipc_id = ipc_perms->key;
4008
4009         return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
4010 }
4011
4012 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4013 {
4014         return msg_msg_alloc_security(msg);
4015 }
4016
4017 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4018 {
4019         msg_msg_free_security(msg);
4020 }
4021
4022 /* message queue security operations */
4023 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4024 {
4025         struct task_security_struct *tsec;
4026         struct ipc_security_struct *isec;
4027         struct avc_audit_data ad;
4028         int rc;
4029
4030         rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4031         if (rc)
4032                 return rc;
4033
4034         tsec = current->security;
4035         isec = msq->q_perm.security;
4036
4037         AVC_AUDIT_DATA_INIT(&ad, IPC);
4038         ad.u.ipc_id = msq->q_perm.key;
4039
4040         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4041                           MSGQ__CREATE, &ad);
4042         if (rc) {
4043                 ipc_free_security(&msq->q_perm);
4044                 return rc;
4045         }
4046         return 0;
4047 }
4048
4049 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4050 {
4051         ipc_free_security(&msq->q_perm);
4052 }
4053
4054 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4055 {
4056         struct task_security_struct *tsec;
4057         struct ipc_security_struct *isec;
4058         struct avc_audit_data ad;
4059
4060         tsec = current->security;
4061         isec = msq->q_perm.security;
4062
4063         AVC_AUDIT_DATA_INIT(&ad, IPC);
4064         ad.u.ipc_id = msq->q_perm.key;
4065
4066         return avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4067                             MSGQ__ASSOCIATE, &ad);
4068 }
4069
4070 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4071 {
4072         int err;
4073         int perms;
4074
4075         switch(cmd) {
4076         case IPC_INFO:
4077         case MSG_INFO:
4078                 /* No specific object, just general system-wide information. */
4079                 return task_has_system(current, SYSTEM__IPC_INFO);
4080         case IPC_STAT:
4081         case MSG_STAT:
4082                 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4083                 break;
4084         case IPC_SET:
4085                 perms = MSGQ__SETATTR;
4086                 break;
4087         case IPC_RMID:
4088                 perms = MSGQ__DESTROY;
4089                 break;
4090         default:
4091                 return 0;
4092         }
4093
4094         err = ipc_has_perm(&msq->q_perm, perms);
4095         return err;
4096 }
4097
4098 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4099 {
4100         struct task_security_struct *tsec;
4101         struct ipc_security_struct *isec;
4102         struct msg_security_struct *msec;
4103         struct avc_audit_data ad;
4104         int rc;
4105
4106         tsec = current->security;
4107         isec = msq->q_perm.security;
4108         msec = msg->security;
4109
4110         /*
4111          * First time through, need to assign label to the message
4112          */
4113         if (msec->sid == SECINITSID_UNLABELED) {
4114                 /*
4115                  * Compute new sid based on current process and
4116                  * message queue this message will be stored in
4117                  */
4118                 rc = security_transition_sid(tsec->sid,
4119                                              isec->sid,
4120                                              SECCLASS_MSG,
4121                                              &msec->sid);
4122                 if (rc)
4123                         return rc;
4124         }
4125
4126         AVC_AUDIT_DATA_INIT(&ad, IPC);
4127         ad.u.ipc_id = msq->q_perm.key;
4128
4129         /* Can this process write to the queue? */
4130         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4131                           MSGQ__WRITE, &ad);
4132         if (!rc)
4133                 /* Can this process send the message */
4134                 rc = avc_has_perm(tsec->sid, msec->sid,
4135                                   SECCLASS_MSG, MSG__SEND, &ad);
4136         if (!rc)
4137                 /* Can the message be put in the queue? */
4138                 rc = avc_has_perm(msec->sid, isec->sid,
4139                                   SECCLASS_MSGQ, MSGQ__ENQUEUE, &ad);
4140
4141         return rc;
4142 }
4143
4144 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4145                                     struct task_struct *target,
4146                                     long type, int mode)
4147 {
4148         struct task_security_struct *tsec;
4149         struct ipc_security_struct *isec;
4150         struct msg_security_struct *msec;
4151         struct avc_audit_data ad;
4152         int rc;
4153
4154         tsec = target->security;
4155         isec = msq->q_perm.security;
4156         msec = msg->security;
4157
4158         AVC_AUDIT_DATA_INIT(&ad, IPC);
4159         ad.u.ipc_id = msq->q_perm.key;
4160
4161         rc = avc_has_perm(tsec->sid, isec->sid,
4162                           SECCLASS_MSGQ, MSGQ__READ, &ad);
4163         if (!rc)
4164                 rc = avc_has_perm(tsec->sid, msec->sid,
4165                                   SECCLASS_MSG, MSG__RECEIVE, &ad);
4166         return rc;
4167 }
4168
4169 /* Shared Memory security operations */
4170 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4171 {
4172         struct task_security_struct *tsec;
4173         struct ipc_security_struct *isec;
4174         struct avc_audit_data ad;
4175         int rc;
4176
4177         rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4178         if (rc)
4179                 return rc;
4180
4181         tsec = current->security;
4182         isec = shp->shm_perm.security;
4183
4184         AVC_AUDIT_DATA_INIT(&ad, IPC);
4185         ad.u.ipc_id = shp->shm_perm.key;
4186
4187         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
4188                           SHM__CREATE, &ad);
4189         if (rc) {
4190                 ipc_free_security(&shp->shm_perm);
4191                 return rc;
4192         }
4193         return 0;
4194 }
4195
4196 static void selinux_shm_free_security(struct shmid_kernel *shp)
4197 {
4198         ipc_free_security(&shp->shm_perm);
4199 }
4200
4201 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
4202 {
4203         struct task_security_struct *tsec;
4204         struct ipc_security_struct *isec;
4205         struct avc_audit_data ad;
4206
4207         tsec = current->security;
4208         isec = shp->shm_perm.security;
4209
4210         AVC_AUDIT_DATA_INIT(&ad, IPC);
4211         ad.u.ipc_id = shp->shm_perm.key;
4212
4213         return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
4214                             SHM__ASSOCIATE, &ad);
4215 }
4216
4217 /* Note, at this point, shp is locked down */
4218 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
4219 {
4220         int perms;
4221         int err;
4222
4223         switch(cmd) {
4224         case IPC_INFO:
4225         case SHM_INFO:
4226                 /* No specific object, just general system-wide information. */
4227                 return task_has_system(current, SYSTEM__IPC_INFO);
4228         case IPC_STAT:
4229         case SHM_STAT:
4230                 perms = SHM__GETATTR | SHM__ASSOCIATE;
4231                 break;
4232         case IPC_SET:
4233                 perms = SHM__SETATTR;
4234                 break;
4235         case SHM_LOCK:
4236         case SHM_UNLOCK:
4237                 perms = SHM__LOCK;
4238                 break;
4239         case IPC_RMID:
4240                 perms = SHM__DESTROY;
4241                 break;
4242         default:
4243                 return 0;
4244         }
4245
4246         err = ipc_has_perm(&shp->shm_perm, perms);
4247         return err;
4248 }
4249
4250 static int selinux_shm_shmat(struct shmid_kernel *shp,
4251                              char __user *shmaddr, int shmflg)
4252 {
4253         u32 perms;
4254         int rc;
4255
4256         rc = secondary_ops->shm_shmat(shp, shmaddr, shmflg);
4257         if (rc)
4258                 return rc;
4259
4260         if (shmflg & SHM_RDONLY)
4261                 perms = SHM__READ;
4262         else
4263                 perms = SHM__READ | SHM__WRITE;
4264
4265         return ipc_has_perm(&shp->shm_perm, perms);
4266 }
4267
4268 /* Semaphore security operations */
4269 static int selinux_sem_alloc_security(struct sem_array *sma)
4270 {
4271         struct task_security_struct *tsec;
4272         struct ipc_security_struct *isec;
4273         struct avc_audit_data ad;
4274         int rc;
4275
4276         rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
4277         if (rc)
4278                 return rc;
4279
4280         tsec = current->security;
4281         isec = sma->sem_perm.security;
4282
4283         AVC_AUDIT_DATA_INIT(&ad, IPC);
4284         ad.u.ipc_id = sma->sem_perm.key;
4285
4286         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
4287                           SEM__CREATE, &ad);
4288         if (rc) {
4289                 ipc_free_security(&sma->sem_perm);
4290                 return rc;
4291         }
4292         return 0;
4293 }
4294
4295 static void selinux_sem_free_security(struct sem_array *sma)
4296 {
4297         ipc_free_security(&sma->sem_perm);
4298 }
4299
4300 static int selinux_sem_associate(struct sem_array *sma, int semflg)
4301 {
4302         struct task_security_struct *tsec;
4303         struct ipc_security_struct *isec;
4304         struct avc_audit_data ad;
4305
4306         tsec = current->security;
4307         isec = sma->sem_perm.security;
4308
4309         AVC_AUDIT_DATA_INIT(&ad, IPC);
4310         ad.u.ipc_id = sma->sem_perm.key;
4311
4312         return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
4313                             SEM__ASSOCIATE, &ad);
4314 }
4315
4316 /* Note, at this point, sma is locked down */
4317 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
4318 {
4319         int err;
4320         u32 perms;
4321
4322         switch(cmd) {
4323         case IPC_INFO:
4324         case SEM_INFO:
4325                 /* No specific object, just general system-wide information. */
4326                 return task_has_system(current, SYSTEM__IPC_INFO);
4327         case GETPID:
4328         case GETNCNT:
4329         case GETZCNT:
4330                 perms = SEM__GETATTR;
4331                 break;
4332         case GETVAL:
4333         case GETALL:
4334                 perms = SEM__READ;
4335                 break;
4336         case SETVAL:
4337         case SETALL:
4338                 perms = SEM__WRITE;
4339                 break;
4340         case IPC_RMID:
4341                 perms = SEM__DESTROY;
4342                 break;
4343         case IPC_SET:
4344                 perms = SEM__SETATTR;
4345                 break;
4346         case IPC_STAT:
4347         case SEM_STAT:
4348                 perms = SEM__GETATTR | SEM__ASSOCIATE;
4349                 break;
4350         default:
4351                 return 0;
4352         }
4353
4354         err = ipc_has_perm(&sma->sem_perm, perms);
4355         return err;
4356 }
4357
4358 static int selinux_sem_semop(struct sem_array *sma,
4359                              struct sembuf *sops, unsigned nsops, int alter)
4360 {
4361         u32 perms;
4362
4363         if (alter)
4364                 perms = SEM__READ | SEM__WRITE;
4365         else
4366                 perms = SEM__READ;
4367
4368         return ipc_has_perm(&sma->sem_perm, perms);
4369 }
4370
4371 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
4372 {
4373         u32 av = 0;
4374
4375         av = 0;
4376         if (flag & S_IRUGO)
4377                 av |= IPC__UNIX_READ;
4378         if (flag & S_IWUGO)
4379                 av |= IPC__UNIX_WRITE;
4380
4381         if (av == 0)
4382                 return 0;
4383
4384         return ipc_has_perm(ipcp, av);
4385 }
4386
4387 /* module stacking operations */
4388 static int selinux_register_security (const char *name, struct security_operations *ops)
4389 {
4390         if (secondary_ops != original_ops) {
4391                 printk(KERN_INFO "%s:  There is already a secondary security "
4392                        "module registered.\n", __FUNCTION__);
4393                 return -EINVAL;
4394         }
4395
4396         secondary_ops = ops;
4397
4398         printk(KERN_INFO "%s:  Registering secondary module %s\n",
4399                __FUNCTION__,
4400                name);
4401
4402         return 0;
4403 }
4404
4405 static int selinux_unregister_security (const char *name, struct security_operations *ops)
4406 {
4407         if (ops != secondary_ops) {
4408                 printk (KERN_INFO "%s:  trying to unregister a security module "
4409                         "that is not registered.\n", __FUNCTION__);
4410                 return -EINVAL;
4411         }
4412
4413         secondary_ops = original_ops;
4414
4415         return 0;
4416 }
4417
4418 static void selinux_d_instantiate (struct dentry *dentry, struct inode *inode)
4419 {
4420         if (inode)
4421                 inode_doinit_with_dentry(inode, dentry);
4422 }
4423
4424 static int selinux_getprocattr(struct task_struct *p,
4425                                char *name, void *value, size_t size)
4426 {
4427         struct task_security_struct *tsec;
4428         u32 sid;
4429         int error;
4430
4431         if (current != p) {
4432                 error = task_has_perm(current, p, PROCESS__GETATTR);
4433                 if (error)
4434                         return error;
4435         }
4436
4437         tsec = p->security;
4438
4439         if (!strcmp(name, "current"))
4440                 sid = tsec->sid;
4441         else if (!strcmp(name, "prev"))
4442                 sid = tsec->osid;
4443         else if (!strcmp(name, "exec"))
4444                 sid = tsec->exec_sid;
4445         else if (!strcmp(name, "fscreate"))
4446                 sid = tsec->create_sid;
4447         else if (!strcmp(name, "keycreate"))
4448                 sid = tsec->keycreate_sid;
4449         else if (!strcmp(name, "sockcreate"))
4450                 sid = tsec->sockcreate_sid;
4451         else
4452                 return -EINVAL;
4453
4454         if (!sid)
4455                 return 0;
4456
4457         return selinux_getsecurity(sid, value, size);
4458 }
4459
4460 static int selinux_setprocattr(struct task_struct *p,
4461                                char *name, void *value, size_t size)
4462 {
4463         struct task_security_struct *tsec;
4464         struct task_struct *tracer;
4465         u32 sid = 0;
4466         int error;
4467         char *str = value;
4468
4469         if (current != p) {
4470                 /* SELinux only allows a process to change its own
4471                    security attributes. */
4472                 return -EACCES;
4473         }
4474
4475         /*
4476          * Basic control over ability to set these attributes at all.
4477          * current == p, but we'll pass them separately in case the
4478          * above restriction is ever removed.
4479          */
4480         if (!strcmp(name, "exec"))
4481                 error = task_has_perm(current, p, PROCESS__SETEXEC);
4482         else if (!strcmp(name, "fscreate"))
4483                 error = task_has_perm(current, p, PROCESS__SETFSCREATE);
4484         else if (!strcmp(name, "keycreate"))
4485                 error = task_has_perm(current, p, PROCESS__SETKEYCREATE);
4486         else if (!strcmp(name, "sockcreate"))
4487                 error = task_has_perm(current, p, PROCESS__SETSOCKCREATE);
4488         else if (!strcmp(name, "current"))
4489                 error = task_has_perm(current, p, PROCESS__SETCURRENT);
4490         else
4491                 error = -EINVAL;
4492         if (error)
4493                 return error;
4494
4495         /* Obtain a SID for the context, if one was specified. */
4496         if (size && str[1] && str[1] != '\n') {
4497                 if (str[size-1] == '\n') {
4498                         str[size-1] = 0;
4499                         size--;
4500                 }
4501                 error = security_context_to_sid(value, size, &sid);
4502                 if (error)
4503                         return error;
4504         }
4505
4506         /* Permission checking based on the specified context is
4507            performed during the actual operation (execve,
4508            open/mkdir/...), when we know the full context of the
4509            operation.  See selinux_bprm_set_security for the execve
4510            checks and may_create for the file creation checks. The
4511            operation will then fail if the context is not permitted. */
4512         tsec = p->security;
4513         if (!strcmp(name, "exec"))
4514                 tsec->exec_sid = sid;
4515         else if (!strcmp(name, "fscreate"))
4516                 tsec->create_sid = sid;
4517         else if (!strcmp(name, "keycreate")) {
4518                 error = may_create_key(sid, p);
4519                 if (error)
4520                         return error;
4521                 tsec->keycreate_sid = sid;
4522         } else if (!strcmp(name, "sockcreate"))
4523                 tsec->sockcreate_sid = sid;
4524         else if (!strcmp(name, "current")) {
4525                 struct av_decision avd;
4526
4527                 if (sid == 0)
4528                         return -EINVAL;
4529
4530                 /* Only allow single threaded processes to change context */
4531                 if (atomic_read(&p->mm->mm_users) != 1) {
4532                         struct task_struct *g, *t;
4533                         struct mm_struct *mm = p->mm;
4534                         read_lock(&tasklist_lock);
4535                         do_each_thread(g, t)
4536                                 if (t->mm == mm && t != p) {
4537                                         read_unlock(&tasklist_lock);
4538                                         return -EPERM;
4539                                 }
4540                         while_each_thread(g, t);
4541                         read_unlock(&tasklist_lock);
4542                 }
4543
4544                 /* Check permissions for the transition. */
4545                 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
4546                                      PROCESS__DYNTRANSITION, NULL);
4547                 if (error)
4548                         return error;
4549
4550                 /* Check for ptracing, and update the task SID if ok.
4551                    Otherwise, leave SID unchanged and fail. */
4552                 task_lock(p);
4553                 rcu_read_lock();
4554                 tracer = tracehook_tracer_task(p);
4555                 if (tracer != NULL) {
4556                         struct task_security_struct *ptsec = tracer->security;
4557                         u32 ptsid = ptsec->sid;
4558                         rcu_read_unlock();
4559                         error = avc_has_perm_noaudit(ptsid, sid,
4560                                                      SECCLASS_PROCESS,
4561                                                      PROCESS__PTRACE, &avd);
4562                         if (!error)
4563                                 tsec->sid = sid;
4564                         task_unlock(p);
4565                         avc_audit(ptsid, sid, SECCLASS_PROCESS,
4566                                   PROCESS__PTRACE, &avd, error, NULL);
4567                         if (error)
4568                                 return error;
4569                 } else {
4570                         rcu_read_unlock();
4571                         tsec->sid = sid;
4572                         task_unlock(p);
4573                 }
4574         }
4575         else
4576                 return -EINVAL;
4577
4578         return size;
4579 }
4580
4581 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
4582 {
4583         return security_sid_to_context(secid, secdata, seclen);
4584 }
4585
4586 static void selinux_release_secctx(char *secdata, u32 seclen)
4587 {
4588         if (secdata)
4589                 kfree(secdata);
4590 }
4591
4592 #ifdef CONFIG_KEYS
4593
4594 static int selinux_key_alloc(struct key *k, struct task_struct *tsk,
4595                              unsigned long flags)
4596 {
4597         struct task_security_struct *tsec = tsk->security;
4598         struct key_security_struct *ksec;
4599
4600         ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
4601         if (!ksec)
4602                 return -ENOMEM;
4603
4604         ksec->obj = k;
4605         if (tsec->keycreate_sid)
4606                 ksec->sid = tsec->keycreate_sid;
4607         else
4608                 ksec->sid = tsec->sid;
4609         k->security = ksec;
4610
4611         return 0;
4612 }
4613
4614 static void selinux_key_free(struct key *k)
4615 {
4616         struct key_security_struct *ksec = k->security;
4617
4618         k->security = NULL;
4619         kfree(ksec);
4620 }
4621
4622 static int selinux_key_permission(key_ref_t key_ref,
4623                             struct task_struct *ctx,
4624                             key_perm_t perm)
4625 {
4626         struct key *key;
4627         struct task_security_struct *tsec;
4628         struct key_security_struct *ksec;
4629
4630         key = key_ref_to_ptr(key_ref);
4631
4632         tsec = ctx->security;
4633         ksec = key->security;
4634
4635         /* if no specific permissions are requested, we skip the
4636            permission check. No serious, additional covert channels
4637            appear to be created. */
4638         if (perm == 0)
4639                 return 0;
4640
4641         return avc_has_perm(tsec->sid, ksec->sid,
4642                             SECCLASS_KEY, perm, NULL);
4643 }
4644
4645 #endif
4646
4647 static struct security_operations selinux_ops = {
4648         .ptrace =                       selinux_ptrace,
4649         .capget =                       selinux_capget,
4650         .capset_check =                 selinux_capset_check,
4651         .capset_set =                   selinux_capset_set,
4652         .sysctl =                       selinux_sysctl,
4653         .capable =                      selinux_capable,
4654         .quotactl =                     selinux_quotactl,
4655         .quota_on =                     selinux_quota_on,
4656         .syslog =                       selinux_syslog,
4657         .vm_enough_memory =             selinux_vm_enough_memory,
4658
4659         .netlink_send =                 selinux_netlink_send,
4660         .netlink_recv =                 selinux_netlink_recv,
4661
4662         .bprm_alloc_security =          selinux_bprm_alloc_security,
4663         .bprm_free_security =           selinux_bprm_free_security,
4664         .bprm_apply_creds =             selinux_bprm_apply_creds,
4665         .bprm_post_apply_creds =        selinux_bprm_post_apply_creds,
4666         .bprm_set_security =            selinux_bprm_set_security,
4667         .bprm_check_security =          selinux_bprm_check_security,
4668         .bprm_secureexec =              selinux_bprm_secureexec,
4669
4670         .sb_alloc_security =            selinux_sb_alloc_security,
4671         .sb_free_security =             selinux_sb_free_security,
4672         .sb_copy_data =                 selinux_sb_copy_data,
4673         .sb_kern_mount =                selinux_sb_kern_mount,
4674         .sb_statfs =                    selinux_sb_statfs,
4675         .sb_mount =                     selinux_mount,
4676         .sb_umount =                    selinux_umount,
4677
4678         .inode_alloc_security =         selinux_inode_alloc_security,
4679         .inode_free_security =          selinux_inode_free_security,
4680         .inode_init_security =          selinux_inode_init_security,
4681         .inode_create =                 selinux_inode_create,
4682         .inode_link =                   selinux_inode_link,
4683         .inode_unlink =                 selinux_inode_unlink,
4684         .inode_symlink =                selinux_inode_symlink,
4685         .inode_mkdir =                  selinux_inode_mkdir,
4686         .inode_rmdir =                  selinux_inode_rmdir,
4687         .inode_mknod =                  selinux_inode_mknod,
4688         .inode_rename =                 selinux_inode_rename,
4689         .inode_readlink =               selinux_inode_readlink,
4690         .inode_follow_link =            selinux_inode_follow_link,
4691         .inode_permission =             selinux_inode_permission,
4692         .inode_setattr =                selinux_inode_setattr,
4693         .inode_getattr =                selinux_inode_getattr,
4694         .inode_setxattr =               selinux_inode_setxattr,
4695         .inode_post_setxattr =          selinux_inode_post_setxattr,
4696         .inode_getxattr =               selinux_inode_getxattr,
4697         .inode_listxattr =              selinux_inode_listxattr,
4698         .inode_removexattr =            selinux_inode_removexattr,
4699         .inode_xattr_getsuffix =        selinux_inode_xattr_getsuffix,
4700         .inode_getsecurity =            selinux_inode_getsecurity,
4701         .inode_setsecurity =            selinux_inode_setsecurity,
4702         .inode_listsecurity =           selinux_inode_listsecurity,
4703
4704         .file_permission =              selinux_file_permission,
4705         .file_alloc_security =          selinux_file_alloc_security,
4706         .file_free_security =           selinux_file_free_security,
4707         .file_ioctl =                   selinux_file_ioctl,
4708         .file_mmap =                    selinux_file_mmap,
4709         .file_mprotect =                selinux_file_mprotect,
4710         .file_lock =                    selinux_file_lock,
4711         .file_fcntl =                   selinux_file_fcntl,
4712         .file_set_fowner =              selinux_file_set_fowner,
4713         .file_send_sigiotask =          selinux_file_send_sigiotask,
4714         .file_receive =                 selinux_file_receive,
4715
4716         .task_create =                  selinux_task_create,
4717         .task_alloc_security =          selinux_task_alloc_security,
4718         .task_free_security =           selinux_task_free_security,
4719         .task_setuid =                  selinux_task_setuid,
4720         .task_post_setuid =             selinux_task_post_setuid,
4721         .task_setgid =                  selinux_task_setgid,
4722         .task_setpgid =                 selinux_task_setpgid,
4723         .task_getpgid =                 selinux_task_getpgid,
4724         .task_getsid =                  selinux_task_getsid,
4725         .task_getsecid =                selinux_task_getsecid,
4726         .task_setgroups =               selinux_task_setgroups,
4727         .task_setnice =                 selinux_task_setnice,
4728         .task_setioprio =               selinux_task_setioprio,
4729         .task_getioprio =               selinux_task_getioprio,
4730         .task_setrlimit =               selinux_task_setrlimit,
4731         .task_setscheduler =            selinux_task_setscheduler,
4732         .task_getscheduler =            selinux_task_getscheduler,
4733         .task_movememory =              selinux_task_movememory,
4734         .task_kill =                    selinux_task_kill,
4735         .task_wait =                    selinux_task_wait,
4736         .task_prctl =                   selinux_task_prctl,
4737         .task_reparent_to_init =        selinux_task_reparent_to_init,
4738         .task_to_inode =                selinux_task_to_inode,
4739
4740         .ipc_permission =               selinux_ipc_permission,
4741
4742         .msg_msg_alloc_security =       selinux_msg_msg_alloc_security,
4743         .msg_msg_free_security =        selinux_msg_msg_free_security,
4744
4745         .msg_queue_alloc_security =     selinux_msg_queue_alloc_security,
4746         .msg_queue_free_security =      selinux_msg_queue_free_security,
4747         .msg_queue_associate =          selinux_msg_queue_associate,
4748         .msg_queue_msgctl =             selinux_msg_queue_msgctl,
4749         .msg_queue_msgsnd =             selinux_msg_queue_msgsnd,
4750         .msg_queue_msgrcv =             selinux_msg_queue_msgrcv,
4751
4752         .shm_alloc_security =           selinux_shm_alloc_security,
4753         .shm_free_security =            selinux_shm_free_security,
4754         .shm_associate =                selinux_shm_associate,
4755         .shm_shmctl =                   selinux_shm_shmctl,
4756         .shm_shmat =                    selinux_shm_shmat,
4757
4758         .sem_alloc_security =           selinux_sem_alloc_security,
4759         .sem_free_security =            selinux_sem_free_security,
4760         .sem_associate =                selinux_sem_associate,
4761         .sem_semctl =                   selinux_sem_semctl,
4762         .sem_semop =                    selinux_sem_semop,
4763
4764         .register_security =            selinux_register_security,
4765         .unregister_security =          selinux_unregister_security,
4766
4767         .d_instantiate =                selinux_d_instantiate,
4768
4769         .getprocattr =                  selinux_getprocattr,
4770         .setprocattr =                  selinux_setprocattr,
4771
4772         .secid_to_secctx =              selinux_secid_to_secctx,
4773         .release_secctx =               selinux_release_secctx,
4774
4775         .unix_stream_connect =          selinux_socket_unix_stream_connect,
4776         .unix_may_send =                selinux_socket_unix_may_send,
4777
4778         .socket_create =                selinux_socket_create,
4779         .socket_post_create =           selinux_socket_post_create,
4780         .socket_bind =                  selinux_socket_bind,
4781         .socket_connect =               selinux_socket_connect,
4782         .socket_listen =                selinux_socket_listen,
4783         .socket_accept =                selinux_socket_accept,
4784         .socket_sendmsg =               selinux_socket_sendmsg,
4785         .socket_recvmsg =               selinux_socket_recvmsg,
4786         .socket_getsockname =           selinux_socket_getsockname,
4787         .socket_getpeername =           selinux_socket_getpeername,
4788         .socket_getsockopt =            selinux_socket_getsockopt,
4789         .socket_setsockopt =            selinux_socket_setsockopt,
4790         .socket_shutdown =              selinux_socket_shutdown,
4791         .socket_sock_rcv_skb =          selinux_socket_sock_rcv_skb,
4792         .socket_getpeersec_stream =     selinux_socket_getpeersec_stream,
4793         .socket_getpeersec_dgram =      selinux_socket_getpeersec_dgram,
4794         .sk_alloc_security =            selinux_sk_alloc_security,
4795         .sk_free_security =             selinux_sk_free_security,
4796         .sk_clone_security =            selinux_sk_clone_security,
4797         .sk_getsecid =                  selinux_sk_getsecid,
4798         .sock_graft =                   selinux_sock_graft,
4799         .inet_conn_request =            selinux_inet_conn_request,
4800         .inet_csk_clone =               selinux_inet_csk_clone,
4801         .inet_conn_established =        selinux_inet_conn_established,
4802         .req_classify_flow =            selinux_req_classify_flow,
4803
4804 #ifdef CONFIG_SECURITY_NETWORK_XFRM
4805         .xfrm_policy_alloc_security =   selinux_xfrm_policy_alloc,
4806         .xfrm_policy_clone_security =   selinux_xfrm_policy_clone,
4807         .xfrm_policy_free_security =    selinux_xfrm_policy_free,
4808         .xfrm_policy_delete_security =  selinux_xfrm_policy_delete,
4809         .xfrm_state_alloc_security =    selinux_xfrm_state_alloc,
4810         .xfrm_state_free_security =     selinux_xfrm_state_free,
4811         .xfrm_state_delete_security =   selinux_xfrm_state_delete,
4812         .xfrm_policy_lookup =           selinux_xfrm_policy_lookup,
4813         .xfrm_state_pol_flow_match =    selinux_xfrm_state_pol_flow_match,
4814         .xfrm_decode_session =          selinux_xfrm_decode_session,
4815 #endif
4816
4817 #ifdef CONFIG_KEYS
4818         .key_alloc =                    selinux_key_alloc,
4819         .key_free =                     selinux_key_free,
4820         .key_permission =               selinux_key_permission,
4821 #endif
4822 };
4823
4824 static __init int selinux_init(void)
4825 {
4826         struct task_security_struct *tsec;
4827
4828         if (!selinux_enabled) {
4829                 printk(KERN_INFO "SELinux:  Disabled at boot.\n");
4830                 return 0;
4831         }
4832
4833         printk(KERN_INFO "SELinux:  Initializing.\n");
4834
4835         /* Set the security state for the initial task. */
4836         if (task_alloc_security(current))
4837                 panic("SELinux:  Failed to initialize initial task.\n");
4838         tsec = current->security;
4839         tsec->osid = tsec->sid = SECINITSID_KERNEL;
4840
4841         sel_inode_cache = kmem_cache_create("selinux_inode_security",
4842                                             sizeof(struct inode_security_struct),
4843                                             0, SLAB_PANIC, NULL, NULL);
4844         avc_init();
4845
4846         original_ops = secondary_ops = security_ops;
4847         if (!secondary_ops)
4848                 panic ("SELinux: No initial security operations\n");
4849         if (register_security (&selinux_ops))
4850                 panic("SELinux: Unable to register with kernel.\n");
4851
4852         if (selinux_enforcing) {
4853                 printk(KERN_INFO "SELinux:  Starting in enforcing mode\n");
4854         } else {
4855                 printk(KERN_INFO "SELinux:  Starting in permissive mode\n");
4856         }
4857
4858 #ifdef CONFIG_KEYS
4859         /* Add security information to initial keyrings */
4860         selinux_key_alloc(&root_user_keyring, current,
4861                           KEY_ALLOC_NOT_IN_QUOTA);
4862         selinux_key_alloc(&root_session_keyring, current,
4863                           KEY_ALLOC_NOT_IN_QUOTA);
4864 #endif
4865
4866         return 0;
4867 }
4868
4869 void selinux_complete_init(void)
4870 {
4871         printk(KERN_INFO "SELinux:  Completing initialization.\n");
4872
4873         /* Set up any superblocks initialized prior to the policy load. */
4874         printk(KERN_INFO "SELinux:  Setting up existing superblocks.\n");
4875         spin_lock(&sb_lock);
4876         spin_lock(&sb_security_lock);
4877 next_sb:
4878         if (!list_empty(&superblock_security_head)) {
4879                 struct superblock_security_struct *sbsec =
4880                                 list_entry(superblock_security_head.next,
4881                                            struct superblock_security_struct,
4882                                            list);
4883                 struct super_block *sb = sbsec->sb;
4884                 sb->s_count++;
4885                 spin_unlock(&sb_security_lock);
4886                 spin_unlock(&sb_lock);
4887                 down_read(&sb->s_umount);
4888                 if (sb->s_root)
4889                         superblock_doinit(sb, NULL);
4890                 drop_super(sb);
4891                 spin_lock(&sb_lock);
4892                 spin_lock(&sb_security_lock);
4893                 list_del_init(&sbsec->list);
4894                 goto next_sb;
4895         }
4896         spin_unlock(&sb_security_lock);
4897         spin_unlock(&sb_lock);
4898 }
4899
4900 /* SELinux requires early initialization in order to label
4901    all processes and objects when they are created. */
4902 security_initcall(selinux_init);
4903
4904 #if defined(CONFIG_NETFILTER)
4905
4906 static struct nf_hook_ops selinux_ipv4_op = {
4907         .hook =         selinux_ipv4_postroute_last,
4908         .owner =        THIS_MODULE,
4909         .pf =           PF_INET,
4910         .hooknum =      NF_IP_POST_ROUTING,
4911         .priority =     NF_IP_PRI_SELINUX_LAST,
4912 };
4913
4914 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4915
4916 static struct nf_hook_ops selinux_ipv6_op = {
4917         .hook =         selinux_ipv6_postroute_last,
4918         .owner =        THIS_MODULE,
4919         .pf =           PF_INET6,
4920         .hooknum =      NF_IP6_POST_ROUTING,
4921         .priority =     NF_IP6_PRI_SELINUX_LAST,
4922 };
4923
4924 #endif  /* IPV6 */
4925
4926 static int __init selinux_nf_ip_init(void)
4927 {
4928         int err = 0;
4929
4930         if (!selinux_enabled)
4931                 goto out;
4932                 
4933         printk(KERN_INFO "SELinux:  Registering netfilter hooks\n");
4934         
4935         err = nf_register_hook(&selinux_ipv4_op);
4936         if (err)
4937                 panic("SELinux: nf_register_hook for IPv4: error %d\n", err);
4938
4939 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4940
4941         err = nf_register_hook(&selinux_ipv6_op);
4942         if (err)
4943                 panic("SELinux: nf_register_hook for IPv6: error %d\n", err);
4944
4945 #endif  /* IPV6 */
4946
4947 out:
4948         return err;
4949 }
4950
4951 __initcall(selinux_nf_ip_init);
4952
4953 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
4954 static void selinux_nf_ip_exit(void)
4955 {
4956         printk(KERN_INFO "SELinux:  Unregistering netfilter hooks\n");
4957
4958         nf_unregister_hook(&selinux_ipv4_op);
4959 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4960         nf_unregister_hook(&selinux_ipv6_op);
4961 #endif  /* IPV6 */
4962 }
4963 #endif
4964
4965 #else /* CONFIG_NETFILTER */
4966
4967 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
4968 #define selinux_nf_ip_exit()
4969 #endif
4970
4971 #endif /* CONFIG_NETFILTER */
4972
4973 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
4974 int selinux_disable(void)
4975 {
4976         extern void exit_sel_fs(void);
4977         static int selinux_disabled = 0;
4978
4979         if (ss_initialized) {
4980                 /* Not permitted after initial policy load. */
4981                 return -EINVAL;
4982         }
4983
4984         if (selinux_disabled) {
4985                 /* Only do this once. */
4986                 return -EINVAL;
4987         }
4988
4989         printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
4990
4991         selinux_disabled = 1;
4992         selinux_enabled = 0;
4993
4994         /* Reset security_ops to the secondary module, dummy or capability. */
4995         security_ops = secondary_ops;
4996
4997         /* Unregister netfilter hooks. */
4998         selinux_nf_ip_exit();
4999
5000         /* Unregister selinuxfs. */
5001         exit_sel_fs();
5002
5003         return 0;
5004 }
5005 #endif
5006
5007